本文结构: 时间序列分析? 什么是ARIMA? ARIMA数学模型? input,output 是什么? 怎么用?-代码实例 常见问题? 时间序列分析? 时间序列,就是按时间顺序排列的,随时间变化的数据序列.生活中各领域各行业太多时间序列的数据了,销售额,顾客数,访问量,股价,油价,GDP,气温... 随机过程的特征有均值.方差.协方差等.如果随机过程的特征随着时间变化,则此过程是非平稳的:相反,如果随机过程的特征不随时间而变化,就称此过程是平稳的.下图所示,左边非稳定,右边稳定. 非平稳时间序…
隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用. 引言: 隐马尔科夫模型是马尔科夫链的一种,它…
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资料就是斯坦福Andrew Ng的cs229.有相关的视频和讲义.只是好的资料 != 好入门的资料,Andrew Ng在coursera有另外一个机器学习课程,更适合入门. 课程有video,review questions和programing exercises,视频尽管没有中文字幕,只是看演示的…
6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/测试集(Model selection and training/validation/test sets) 6.4 偏差与方差 6.4.1 Diagnosing bias vs. variance. 6.4.2 正则化与偏差/方差(Regularization and bias/variance)…
 先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: sklearn的机器学习使用流程: from sklearn.模型簇 import 模型名 from sklearn.metrics import 评价指标 ''' 数据预处理及训练测试集分离提取''' myModel = 模型名称() # 对象初始化 myModel.fit(训练集x , 训练集y) #…
今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectation maximization.期望最大化. 怎么个意思呢,就是给你一堆观測样本.让你给出这个模型的參数预计.我靠,这套路我们前面讨论各种回归的时候不是已经用烂了吗?求期望,求对数期望,求导为0,得到參数预计值.这套路我懂啊,MLE! 但问题在于,假设这个问题存在中间的隐变量呢?会不会把我们的套路给…
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷积层.Pooling池化层等非常丰富有趣的网络结构. 我们可以通过将层的列表传递给Sequential的构造函数,来创建一个Sequential模型. from keras.models import Sequential from keras.layers import Dense, Activa…
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记2 - sklearn之iris数据集>吗?本文也将使用tf.estimator改造该示例. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. tf.estimator 内置模型 比起用底层API"较硬"的编码方式,tf.estimator的在…
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) ML Lecture 4:Classification:Probabilistic Generative Model 在这堂课中,老师主要根据宝可梦各属性值预测其类型为例说明分类问题,其训练数据为若干宝可梦的各属性值及其类型…