一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍…
本文结构: CART算法有两步 回归树的生成 分类树的生成 剪枝 CART - Classification and Regression Trees 分类与回归树,是二叉树,可以用于分类,也可以用于回归问题,最先由 Breiman 等提出. 分类树的输出是样本的类别, 回归树的输出是一个实数. CART算法有两步: 决策树生成和剪枝. 决策树生成:递归地构建二叉决策树的过程,基于训练数据集生成决策树,生成的决策树要尽量大: 自上而下从根开始建立节点,在每个节点处要选择一个最好的属性来分裂,使得…
CART:Classification and regression tree,分类与回归树.(是二叉树) CART是决策树的一种,主要由特征选择,树的生成和剪枝三部分组成.它主要用来处理分类和回归问题,下面对分别对其进行介绍. 1.回归树:使用平方误差最小准则 训练集为:D={(x1,y1), (x2,y2), …, (xn,yn)}. 输出Y为连续变量,将输入划分为M个区域,分别为R1,R2,…,RM,每个区域的输出值分别为:c1,c2,…,cm则回归树模型可表示为: 则平方误差为: 假如使…
一.决策树的类型  在数据挖掘中,决策树主要有两种类型: 分类树 的输出是样本的类标. 回归树 的输出是一个实数 (比如房子的价格,病人呆在医院的时间等). 术语分类和回归树 (CART) 包括了上述两种决策树, 最先由Breiman 等提出.分类树和回归树有些共同点和不同点-比如处理在何处分裂的问题. 分类回归树(CART,Classification And Regression Tree)也属于一种决策树,之前我们介绍了基于ID3和C4.5算法的决策树. 这里仅仅介绍CART是如何用于分类…
from www.jianshu.com/p/b90a9ce05b28 本文结构: CART算法有两步 回归树的生成 分类树的生成 剪枝 CART - Classification and Regression Trees 分类与回归树,是二叉树,可以用于分类,也可以用于回归问题,最先由 Breiman 等提出. 分类树的输出是样本的类别, 回归树的输出是一个实数. CART算法有两步: 决策树生成和剪枝. 决策树生成:递归地构建二叉决策树的过程,基于训练数据集生成决策树,生成的决策树要尽量大:…
起源:决策树切分数据集 决策树每次决策时,按照一定规则切分数据集,并将切分后的小数据集递归处理.这样的处理方式给了线性回归处理非线性数据一个启发. 能不能先将类似特征的数据切成一小部分,再将这一小部分放大处理,使用线性的方法增加准确率呢? Part I:  树的枝与叶 枝:二叉 or 多叉? 在AdaBoost的单决策树中,对于连续型数据构建决策树,我们采取步进阈值切分2段的方法.还有一种简化处理,即选择子数据集中的当前维度所有不同的值作为阈值切分. 而在CART里,大于阈值归为左孩子,小于阈值…
 一.Logistic回归实现 (一)特征值较少的情况 1. 实验数据 吴恩达<机器学习>第二课时作业提供数据1.判断一个学生能否被一个大学录取,给出的数据集为学生两门课的成绩和是否被录取,通过这些数据来预测一个学生能否被录取. 2. 分类结果评估 横纵轴(特征)为学生两门课成绩,可以在图中清晰地画出决策边界. 3. 代码实现 首先自己实现了梯度下降方法并测试 gradientDesent.m %Logistic gradientDesent function [Theta] = gradie…
Logistic回归模型 1. 模型简介: 线性回归往往并不能很好地解决分类问题,所以我们引出Logistic回归算法,算法的输出值或者说预测值一直介于0和1,虽然算法的名字有“回归”二字,但实际上Logistic回归是一种分类算法(classification y = 0 or 1). Logistic回归模型: 课堂记录(函数图像): 函数h(x)的输出值,我们把它看做,对于一个输入值x,y = 1的概率估计.比如说肿瘤分类的例子,我们有一个特征向量x,似的h(x)的输出为0.7,我们的假设…
对于之前的一个,二元分类问题,我们的数据看起来可能是像这样: 对于一个多类分类问题,我们的数据集或许看起来像这样: 我用3 种不同的符号来代表3 个类别,问题就是给出3 个类型的数据集,我们如何得到一个学习算法来进行分类呢?我们现在已经知道如何进行二元分类,可以使用逻辑回归,对于直线或许你也知道,可以将数据集一分为二为正类和负类.用一对多的分类思想,我们可以将其用在多类分类问题上.下面将介绍如何进行一对多的分类工作,有时这个方法也被称为"一对余"方法. 现在我们有一个训练集,好比上图表…
模型介绍 对于分类问题,其得到的结果值是离散的,所以通常情况下,不适合使用线性回归方法进行模拟. 所以提出Logistic回归模型. 其假设函数如下: \[ h_θ(x)=g(θ^Tx) \] 函数g定义如下: \[ g(z)=\frac{1}{1+e^{-z}}(z∈R) \] 所以假设函数书写如下: \[ h_θ(x)=\frac{1}{1+e^{-θ^Tx}} \] 图像类似如下: 根据图像我们可以看出,当g(z)中的z大于0的时候,其g(z)则大于0.5,则此状态下的可能性则更大. 决策…
大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!…
主要内容: 一.回归与分类 二.Logistic模型即sigmoid function 三.decision boundary 决策边界 四.cost function 代价函数 五.梯度下降 六.自带求解函数 七.多分类问题 一.回归与分类 回归:用于预测,输出值是连续型的.例如根据房子的大小预测房子的价格,其价格就是一个连续型的数. 分类:用于判别类型,输出值是离散型的(或者可以理解为枚举型,其所有的输出值是有限的且已知的),例如根据肿瘤的大小判断其是恶行肿瘤还是良性肿瘤,其输出值就是0或1…
当我们有不止两种分类时(也就是…
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数…
1.环境安装 1.1 vs2017+cuda9.1+cudnn7.0可以和tensorflow一起安装网上教程多,不多说.       唯一需要注意的是vs2017要安装好2015版本的工具集v140 1.2 opencv3.4.0 winpack版解压,注意目录位置,后续会用到 1.3 然后你需要找到自己所对应版本的oepncv的相关几个dll文件,3.4版本是(opencv_world340.dll and opencv_ffmpeg340_64.dll)      拷贝到到darknet-…
这里所拟合模型的AIC和SC统计量的值均小于只有截距的模型的相应统计量的值,说明含有自变量的模型较仅含有常数项的要好 但模型的最大重新换算 R 方为0.0993,说明模型拟合效果并不好,可能有其他危险因素未包括到模型中 P值均远小于0,05,可以认为模型是成立的 P值均远小于0,05,说明两个自变量对食管癌发病均有影响 两个自变量的OR点估计值都大于1,且95%可信区间均不包含1,说明吸烟和饮酒引起食管癌的危险性较大,吸烟的危险性是不吸烟的2.424倍,饮酒的危险性是不饮酒的1.692倍 预测概…
https://blog.csdn.net/weixin_43383558/article/details/84303339?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-…
一.有关笔记: 1..吴恩达机器学习笔记(二) —— Logistic回归 2.吴恩达机器学习笔记(十一) —— Large Scale Machine Learning 二.Python源码(不带正则项): # coding:utf-8 ''' Created on Oct 27, 2010 Logistic Regression Working Module @author: Peter ''' from numpy import * def sigmoid(inX): return 1.0…
目录 回归树 理论解释 算法流程 ID3 和 C4.5 能不能用来回归? 回归树示例 References 说到决策树(Decision tree),我们很自然会想到用其做分类,每个叶子代表有限类别中的一个.但是对于决策树解决回归问题,一直是一知半解,很多时候都是一带而过. 对于一个回归问题,我们第一时间想到的可能就是线性回归(linear regression),当线性回归不好的时候,可能想着用 SVR(Support Vector Regression)试试.但回归树(regression…
CART与决策树中的超参数 先前的决策树其实应该称为CART CART的英文是Classification and regression tree,全称为分类与回归树,其是在给定输入随机变量X条件下输出随机变量Y的条件概率分布的学习方法,就是假设决策树是二叉树,内部结点特征的取值为"是"和"否",左分支是取值为"是"的分支,右分支是取值为"否"的分支,其可以解决分类问题,又可以解决回归问题,特点就是根据某一个维度d和某一个阈值…
秒懂机器学习---分类回归树CART 一.总结 一句话总结: 用决策树来模拟分类和预测,那些人还真是聪明:其实也还好吧,都精通的话想一想,混一混就好了 用决策树模拟分类和预测的过程:就是对集合进行归类的过程(归类自然也就给出了预测,因为某类的结果一般是一样的) 1.CART( Classification And Regression Tree)算法是什么? 分类回归树算法 决策树的一种实现 2.CART( Classification And Regression Tree)算法的实质是什么?…
课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增强(AdaBoost) Bagging和AdaBoost算法再分类的时候,是让所有的弱分类器同时发挥作用.它们之间的区别每个弱分离器是否对后来的blending生成G有相同的权重. Decision Tree是一种有条件的融合算法,每次只能根据条件让某个分类器发挥作用. 二.基本决策树算法 1.用递…
之前有文章介绍过决策树(ID3).简单回顾一下:ID3每次选取最佳特征来分割数据,这个最佳特征的判断原则是通过信息增益来实现的.按照某种特征切分数据后,该特征在以后切分数据集时就不再使用,因此存在切分过于迅速的问题.ID3算法还不能处理连续性特征. 下面简单介绍一下其他算法: CART 分类回归树 CART是Classification And Regerssion Trees的缩写,既能处理分类任务也能做回归任务. CART树的典型代表时二叉树,根据不同的条件将分类. CART树构建算法 与I…
概要 本部分介绍 CART,是一种非常重要的机器学习算法.   基本原理   CART 全称为 Classification And Regression Trees,即分类回归树.顾名思义,该算法既可以用于分类还可以用于回归. 克服了 ID3 算法只能处理离散型数据的缺点,CART 可以使用二元切分来处理连续型变量.二元切分法,即每次把数据集切分成两份,具体地处理方法是:如果特征值大于给定值就走左子树,否则就走右子树.对 CART 稍作修改就可以处理回归问题.先前我们使用香农熵来度量集合的无组…
机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我们要明白,什么是回归树,什么是分类树. 两者的区别在于样本输出: 如果样本输出是离散值,那么这是一颗分类树. 如果果样本输出是连续值,那么那么这是一颗回归树. 除了概念的不同,CART回归树和CART分类树的建立和预测的区别主要有下面两点: 1)连续值的处理方法不同 2)决策树建立后做预测的方式不同…
1.简单介绍 线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外).当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙.此外,实际中很多问题为非线性的,例如常见到的分段函数,不可能用全局线性模型来进行拟合. 树回归将数据集切分成多份易建模的数据,然后利用线性回归进行建模和拟合.这里介绍较为经典的树回归CART(classification and regression trees,分类回归树)算法. 2.分类回归树基本流程 构建树: 1.找到[最佳待切分…
上一篇我们学习和实现了CART(分类回归树),不过主要是针对离散值的分类实现,下面我们来看下连续值的cart分类树如何实现 思考连续值和离散值的不同之处: 二分子树的时候不同:离散值需要求出最优的两个组合,连续值需要找到一个合适的分割点把特征切分为前后两块 这里不考虑特征的减少问题 切分数据的不同:根据大于和小于等于切分数据集 def splitDataSet(dataSet, axis, value,threshold): retDataSet = [] if threshold == 'lt…
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后的算法执行过程中将不会在起作用,这种切分方法比较迅速,但是一个比较明显的缺点是不能直接处理连续型的特征,只有事先将连续型的数据转换成离散型才能再ID3算法中使用. CART(Classification And Regression Tree)算法采用一种二分递归分割的技术,将当前的样本集分为两个子…
一.CART决策树模型概述(Classification And Regression Trees)   决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节点表示树选择那几个变量(属性)作为划分,每棵树的叶节点表示为一个类的标号,树的最顶层为根节点. 决策树是通过一系列规则对数据进行分类的过程.它提供一种在什么条件下会得到什么值的类似规则的方法.​​决策树算法属于有指导的学习,即原数据必须包含预测变量和目标变量.决策树分为分类决策树(目标变量为分类型数…
决策树的剪枝 决策树为什么要剪枝?原因就是避免决策树“过拟合”样本.前面的算法生成的决策树非常的详细而庞大,每个属性都被详细地加以考虑,决策树的树叶节点所覆盖的训练样本都是“纯”的.因此用这个决策树来对训练样本进行分类的话,你会发现对于训练样本而言,这个树表现堪称完美,它可以100%完美正确得对训练样本集中的样本进行分类(因为决策树本身就是100%完美拟合训练样本的产物). 但是,这会带来一个问题,如果训练样本中包含了一些错误,按照前面的算法,这些错误也会100%一点不留得被决策树学习了,这就是…