BZOJ 1369 树形DP】的更多相关文章

思路: f[i][j] 表示节点i 染成j时 子树的最小权值 (我会猜这个j很小 你打我吖~) 随便DP一发就好了 (证明我也不会) //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N=20050,inf=0x3f3f3f3f; int v[N],next[N],first[N],tot,n,xx,yy,f[N]…
就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstring> #define LL long long ; ]; LL head[Maxn],F[Maxn],G[Maxn],cnt,U,V,E,vis[Maxn],a[Maxn],n,Ans; inline void Add(LL u,LL v) {edge[++cnt].to=v;edge[cnt].nex…
题意:给出一棵树,两个给给的人在第\(i\)天会从节点\(i\)沿着最长路径走,求最长的连续天数\([L,R]\)使得\([L,R]\)为起点的最长路径极差不超过m 求\(1\)到\(n\)的最长路经可用树形DP求解, 设\(f[i]\):\(i\)的子树下到\(i\)的最远距离 \(g[i]\):\(i\)子树下除了\(f[i]\)子树以外的最远距离 \(h[i]\):除了\(i\)子树以外到\(i\)的最远距离 \(h[i]\)从父到儿子的转移需要判断\(i\)到底是\(fa\)的最远距离所…
http://blog.csdn.net/mirrorgray/article/details/51123741 安利队长blog- 树形dp吧,状态挺显然的,dp[x][j]表示以x为根的子树中,选择了j个黑点的答案,但注意这个答案是整棵树的答案. 我们只需要对于每个儿子背包一遍,在最后更新一下dp[x][j]即可,具体可以看一眼程序. 非常重要的是,这个复杂度是n^2的,需要注意的是,如果我们要保证复杂度,for(int j=size[x];~j;j–)for(int k=size[ver[…
###题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4987 ###分析 先考虑贪心,显然k个节点形成一棵树 求出树的直径,显然直径应该只被经过1次(最长的边应该走最少次数),其他非直径上的边被经过2次 整体的形状应该类似一条链上接着许多子树 考虑树形DP 子状态:dp[x][i][j](j∈{0,1,2})dp[x][i][j]( j\in \left\{0,1,2\right\})dp[x][i][j](j∈{0,1,2}),表示以x…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place. Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会…
题目大意 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下层的公民即叶子节点的公民是平民,平民没有下属,最上层的是国王,中间是各级贵族.现在这个王国爆发了战争,国王需要决定每一个平民是去种地以供应粮食还是参加战争,每一个贵族(包括国王自己)是去管理后勤还是领兵打仗.一个平民会对他的所有直系上司有贡献度,若一个平民 i 参加战争,他的某个直系上司 j 领兵打仗,那么这个平民…
题目大意 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小.N<=10000 题解 我们可以猜一个结论,用到的编号不会超过某一个值 我们发现我们可以开到100以上都不会超时 所以我们把编号最多100算,跑树形dp即可 其实可以证明编号不会超过logn... Code #include <cstdio> #include <cstring> #include <algor…
传送门 解题思路 直接按奇偶层染色是错的,\(WA\)了好几次,所以要树形\(dp\),感觉最多\(log\)种颜色,不太会证. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; const int N=10005; inline int rd(){ int x=0,f=…
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Father[i] 之间的边对答案的贡献(比如这条边对黑点对距离和的贡献就是子树内部的黑点数 * 子树外部的黑点数 * 这条边的权值). 然后DFS来求,枚举 i 的每个儿子 j,现在的 f[i][] 是包含了 [1, j-1] 子树,然后两重循环枚举范围是 [1, j - 1] 的子树总 Size 和…
题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子树可以与 x 的父亲连接的最小路径数. 转移的方式非常巧妙,Orz PoPoQQQ 的 blog . 代码 #include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #…
4871: [Shoi2017]摧毁"树状图" 题意:一颗无向树,选两条边不重复的路径,删去选择的点和路径剩下一些cc,求最多cc数. update 5.1 : 刚刚发现bzoj上这个做法被hack了....以后再想一下别的做法吧 一开始以为这是三合一,写了x=2和x=1. 后来才明白...人家给出的本来就是最优...你自己再求也无所谓 x=0的树形DP没有想出来,感觉很不好处理. 题解是对边进行树形DP 对于有向边\(p:(u,v)\),\(f(p), g(p), d(p)\)分别表…
BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移的时候枚举两棵子树中有多少点.颜色是什么即可. 因为红黑树的深度是\(O(\log n)\)的,所以第二维只需要\(O(\log n)\),所以复杂度是\(O(n^2\log n)\).代码这里有. 因为问题可以拆分成子问题,所以我们考虑几种节点数较少的子树的情况,然后把这棵子树合并成一个黑点(表示…
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis(x,i)^K\). \(n\leq50000,\ k\leq150\). \(Solution\) 和其它求\(x^k\)的题一样,依旧用第二类斯特林数展开.(二项式定理依旧可以得到部分分,依旧不想看=-=) \[\begin{aligned}S(x)&=\sum_{i=1}^ndis(x,i)^K…
BZOJ 洛谷 后缀数组做法. 洛谷上SAM比SA慢...BZOJ SAM却能快近一倍... 只考虑求极长相同子串,即所有后缀之间的LCP. 而后缀的LCP在后缀树的LCA处.同差异这道题,在每个点处树形DP统计它作为LCA时的贡献即可(有多少对后缀以它为LCA). 而第二问,同样维护子树内的最大值次大值.最小值次小值作为答案即可. 非后缀节点的\(size=0\),最值的初值同样要设成\(INF\)...但是最后也要一样DP. 初始设成\(INF\)在最后转移的时候同样要判...(不能是两个\…
题目链接 BZOJ 洛谷P2495 树形DP,对于每棵子树要么逐个删除其中要删除的边,要么直接断连向父节点的边. 如果当前点需要删除,那么直接断不需要再管子树. 复杂度O(m*n). 对于两个要删除的点 u,v 之间的链,若链上没有其它需要删的点,则只需保留链上的最小边权即可. 把有用的点按DFS序排序,依次构建出一棵虚树,可以在上面进行同样的DP. 代码在下面 这儿是虚树构建详细过程(这图有点..图可以拖到后台打开): 参考:https://www.cnblogs.com/Michael-Li…
Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余的\(+1\),记录一下\(size\)就ok了 转移: \(f[i] = f[fa] + n - 2 * size[i]\) 记忆化搜索即可. Bzoj 可能过不了,原因貌似是栈空间不足,可以去洛谷提交,我这里的解决方法是.记忆化搜索的时候用\(n\)作为开头.然后就过了. #include <i…
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u,v之间有一条边,图上u,v对应的点之间也有一条边. \(n \leq 17\) 分析 看到\(n \leq 17\),我们应该想到状态压缩.但直接用子集dp的时间复杂度为\(O(3^nn^3)\),会TLE.所以我们压缩的状态可能有问题,考虑优化. 显然题目给了两个限制: 原树中的每条边都要在图中…
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<=500000) 考虑树形DP,我们令mn[i]表示i节点无法与1节点相连切除的最小权值.显然有mn[i]=min(E(fa,i),mn[fa]).大致就是i到1的简单路径上的最小边.我们对于每个询问.把询问的点不妨称为关键点.令dp[i]表示i节点不能与子树的关键点连接切掉的最小权值.那么有,如果son[i]…
4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者间接, 不包括他自己)中叛徒占的比例超过x,那么这个人也会变成叛徒,并且他的所有下属都会变 成叛徒.你要求出一个最小的x,使得最坏情况下,叛徒的个数不会超过k. Input 第一行包含两个正…
一看到这道题觉得很水,打了递归树形DP后RE了一组,后来发现必须非递归(BFS) 递归版本84分: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ],next[],v[],c[],cnt=,f[]; ]; ; void insect(int x,int y,int z){next[cnt]=point[x];point[x]=cnt;v[cnt]=y;c[cnt]=…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1060 [题意] 求最少的增加量,使得以rt为根的树中由一个结点出发的所有到叶子结点的路长相等. [思路] 树形DP. 设f[u]为以u为根的子树中到叶子的最大路长,只要把其他的所有路长都增加到f[u]就可以了. [代码] #include<cstdio> #include<cstring> #include<iostream> using namespace…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题意] 给一个基环森林,每个点有一个权值,求一个点集使得点集中的点无边相连且权值和最大. [思路] 注意题目中的有向边其实就是无向边.然后有多个联通块,每个联通块中有且仅有一个环. 如果没有环的话可以用树形DP,解决这个问题. 设f[i][0],f[i][1]分别表示以i为根,不选/选i时的最大权值.则有转移式: f[i][0]=sigma{ max(f[son(i)][0]…
一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了. --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&…
树形dp求出某个点的最长3条链a,b,c(a>=b>=c), 然后以这个点为交点的最优解一定是a+2b+c.好像还有一种做法是求出树的直径然后乱搞... --------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<cctype>   usin…
树形dp... dp(x, 0)表示结点x不放士兵, 由父亲控制: dp(x, 1)表示结点x不放士兵, 由儿子控制: dp(x, 2)表示结点x放士兵. ------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace…
3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传送门 每个充电的点贡献1,就是求每个点充电的概率的和 考虑树形DP ,分别求子树内的影响和父亲的影响 \(g[i]\)表示i被子树i里的点充电的概率,\(f[i]\)表示i被充电的概率 因为被子树充电时子树里的点不可能被i充电, \[g[i] = q_i \bigcup g_v : (i,v) \i…
4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自己的想法吧 如果直接上树形DP的话,必须要保存当前子树对应了图上的点的集合才行,要不然做不到1对1.但这样复杂度就炸掉了至少需要\(3^n\)枚举子集 我们可以用容斥原理来弱化这个限制,使得允许多对1 \[ 树上n个点对应图上n个点的方案数\ = \\ \] \[ n个点对应\le n个点\ -\…
题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1}^n i+j = (n-1)*\sum_{i=1}^n = (n-1)*\frac{n*(n+1)}{2}\] 对于后半部分: SAM:求后缀的LCP,我们可以想到将字符串反转,求前缀的最长公共后缀. parent树上每个叶子节点都对应一个前缀,两个节点间的最长公共后缀在它们的LCA处,长度为le…
题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前i棵子树花费为j能贡献给x的最大价值. 那么 \(g[i][j] = max{g[i-1][j-k]+f[v][l*need[x]][k]}\).\(need[x]\)为x需要子节点v的个数,\(l\)为合成x的个数,这个同样需要枚举. 那么对于每个\(l\),可以枚举用多少个x合成上一层,更新f,…