Perceptron Learning Algorithm(python实现)】的更多相关文章

一.概论 对于给定的n维(两种类型)数据(训练集),找出一个n-1维的面,能够"尽可能"地按照数据类型分开.通过这个面,我们可以通过这个面对测试数据进行预测. 例如对于二维数据,要找一条直线,把这些数据按照不同类型分开.我们要通过PLA算法,找到这条直线,然后通过判断预测数据与这条直线的位置关系,划分测试数据类型.如下图: 二.PLA的原理 先初始化一条直线,然后通过多次迭代,修改这条直线,通过多次迭代,这条直线会收敛于接近最佳分类直线. 修改直线的标准是,任意找出一个点(训练数据中的…
直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:features的值是有物理意义的. b) 而圈圈和叉叉是为了标注不同的样本(正样本 负样本),即label:为了后续的很多简便表示,这里正样本取+1,负样本取-1 2. Perceptron Learning策略的几何意义:表示临界线(面)的法向量旋转方向 由于label设为了+1和-1,可以直接用w+…
Perceptron - 感知机,是一种二元线性分类器,它通过对特征向量的加权求和,并把这个”和”与事先设定的门槛值(threshold)做比较,高于门槛值的输出1,低于门槛值的输出-1.其中sign 是取符号函数,括号中所包含的内容大于0时,取+1:小于0时,取-1. 对h(x)做一些数学上的简化.变成向量表示: 感知机(perceptron)是一个线性分类器(linear classifiers).sign(WTX)其实就相当于WTX=0,都表示一个超平面. PLA算法只有在满足训练样本是线…
此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一) PLA算法是基本的binary Classification算法. 一个基本的问题是,对于银行,假设我知道用户的年龄.性别.工作.工资,那么应不应该发信用卡给他? 那么它在二维空间里就是一条分割平面的直线. 如何从拥有无限多h的H中选择g? 上述算法的一种实现是: 从上述算法中可以知道:(以二维空间为例)如果没有一条直线能够完全的分开数据点,即:输入数据不是线性可分的,那么上述算法永远不会停止.一种解决方法是:…
感知机是支持向量机SVM和神经网络的基础 f = sign(wx+b) 这样看起来好像是LR是差不多的,LR是用的sigmoid函数,PLA是用的sign符号函数,两者都是线性分类器,主要的差别在于策略不同,即损失函数不同. LR是用的均方误差,PLA是用的误分类点到分离超平面的总距离. 感知机模型: f = sign(wx+b) 几何解释: wx+b = 0是一个超平面s,w是s的法向量,b是超平面的截距. 理想情况下,s把正负类分开. 感知机学习策略: 损失函数的选取是:误分类点到超平面s的…
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur…
Getting started with machine learning in Python Machine learning is a field that uses algorithms to learn from data and make predictions. Practically, this means that we can feed data into an algorithm, and use it to make predictions about what might…
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归…
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…
i want to do some projects in macine learning using python help me in this context I don't know if you have any experience with Machine Learning. Assuming you are new to this: http://archive.ics.uci.edu/ml/ Pick a dataset of interest from the above r…