题目链接 Simpson积分公式:\[\int_a^bf(x)dx\approx\frac{b-a}{6}\left[f(a)+f(b)+4f(\frac{a+b}{2})\right]\] 推导过程大概就是,令\(f(x)=Ax^2+Bx+C\),代进去求一下积分就好了? 自适应是指根据区间大小控制精度.满足精度要求时直接返回. 那个,有人知道asr是指什么吗..(什么的缩写?) //0ms 1.7MB #include <cmath> #include <cstdio> #in…
"类欧几里得算法"第二题 P5170 [题意]已知\(n,a,b,c\),求 \[ \begin{aligned} f_{1}(a,b,c,n)&=\sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rfloor\\ f_{2}(a,b,c,n)&=\sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rfloor^2\\ f_{3}(a,b,c,n)&=\sum_{i=0}^n\lfloor\dfrac{ai+b}{c}\rf…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long long b,long long &x,long long &y) { if(a==0&&b==0)return -1;//无最大公约数 if(b==0){x=1;y=0;return a;} long long d=extend_gcd(b,a%b,y,x); y-=a/b…
类欧几里得算法 给出 \(T\) 组询问,每组用 \(n, a, b, c, k_1, k_2\) 来描述.对于每组询问,请你求出 \[ \sum_{x = 0} ^ {n} x ^ {k_1} {\left \lfloor \frac{ax + b}{c} \right \rfloor} ^ {k_2} \] 对 \(1000000007\) 取模. 对于 \(100 \%\) 的数据,\(T = 1000, 1 \le n, a, b, c \le {10} ^ 9, 0 \le k_1 +…
\(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\lfloor\frac{ax+b}{c}\right\rfloor^{k_2}\bmod(10^9+7) \]   \(T=1000\),\(n,a,b,c\le10^9\),\(0\le k_1+k_2\le 10\). \(\mathcal{Solution}\)   类欧模板题的集大成者.  …
原理不难但是写起来非常复杂的东西. 我觉得讲得非常好懂的博客.   传送门 我们设 $$f(a, b, c, n) = \sum_{i = 0}^{n}\left \lfloor \frac{ai + b}{c} \right \rfloor$$ $$g(a, b, c, n) = \sum_{i = 0}^{n}i\left \lfloor \frac{ai + b}{c} \right \rfloor$$ $$h(a, b, c, n) = \sum_{i = 0}^{n}\left \lf…
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[kmp算法]学习一下就知道了. 输入输出格式 输入格式: 第一行为一个字符串,即为s1(仅包含大写字母) 第二行为一个字符串,即为s2(仅包含大写字母) 输出格式: 若干行,每行包含一个整数,表示s2在s1中出现的位置 接下来1行,包括length(s2)个整…
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度. 目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分 重链剖分 实际上我们经常讲的树剖,就是重链剖分的常用称呼. 对于每个点,选择最大的子树,将这条连边划分为重边,而连向其他子树的边划分为轻边. 若干重边连接在…
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模板题,直接贴上来. [代码] #include<queue> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; ; queue < int >…