FCN用卷积层代替FC层原因(转)】的更多相关文章

分类任务 CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的做法就是利用caffe提供的alexnet的模型,然后把输出的全连接层稍稍修改称为自己想要的类别数,然后再根据实际需要修改网络模型(通常是瘦身).下面记录几个point. 关于crop 一般在训练的时候会利用两个手段做data augmentation,分别是mirror和crop.其中,mirror没什么特别,但是crop有一些东西我们需要了解. 在训练的时候,crop操作会在大图上随机切小图,然后…
原博客连接 : https://www.cnblogs.com/byteHuang/p/6959714.html CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的做法就是利用caffe提供的alexnet的模型,然后把输出的全连接层稍稍修改成为自己想要的类别数,然后再根据实际需要修改网络模型(通常是瘦身).下面记录几个Point. 关于Crop 一般在训练的时候会利用两个手段做data augmentation, 分别是mirror和crop.其中,mirr…
network = tflearn.input_data(shape=[None, max_len], name='input') network = tflearn.embedding(network, input_dim=volcab_size, output_dim=32) network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_1d(network, 2)…
https://blog.csdn.net/saw009/article/details/80590245 关于LeNet-5卷积神经网络 S2层与C3层连接的参数计算的思考??? 首先图1是LeNet-5的整体网络结构图 图1 LeNet-5结构 该神经网络共有7层(不计输入层),输入图像大小为32×32. 层编号特点:英文字母+数字 英文字母代表以下一种: C→卷积层.S→下采样层(池化).F→全连接层 数字代表当前是第几层,而非第几卷积层(池化层.ec) 术语解释:参数→权重w与偏置b 连…
在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,全连接层的每一个节点都与上一层每个节点连接,是把前一层的输出特征都综合起来,所以该层的权值参数是最多的.例如在VGG16中,第一个全连接层FC1有4096个节点,上一层POOL2是7*7*512 = 25088个节点,则该传输需要4096*25088个权值,需要耗很大的内存.又如下图: 最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,进行了最后一次池化,输出了20个12*12的图像,然…
常规的神经网络连接结构如下  当网络训练完成, 在推导的时候为了加速运算, 通常将卷积层和 batch-norm 层融合, 原理如下 \[ \begin{align*} y_{conv} &= w \cdot x + b \\ y_{bn} &= \gamma \cdot \left (\frac{y_{conv} - E[x]}{\sqrt{Var[x] + \epsilon}} \right)+\beta \\ &= \gamma \cdot \left (\frac{wx+…
在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tensorflow中的卷积和池化层(一)的内容,继续介绍tf框架中卷积神经网络CNN的使用. 因此,接下来将介绍CNN的入门级教程cifar10\100项目.cifar10\100 数据集是由Alex Krizhevsky.Vinod Nair和Geoffrey Hinton收集的,这两个数据集都是从800…
在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁.方便,这其实完全类似于Caffe的python接口,但是由于框架底层的实现不一样,tf无论是在单机还是分布式设备上的实现效率都受到一致认可. CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数是什么?具体的tutorial地址参见Tensorflow中文社区. 卷积(Convolution)…
类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽.CNN方法的多层结构,在保留边缘映射的数目的同时可以有效地降低"支持向量"的个数,是通过函数复合-因式分解得到的,至于要使用多少层的网络,每一层网神经元的个数,两层之间的链接方式,理论上也应该有一般的指导规则. 参考链接:人工机器:作…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…