CNN 防止过拟合的方法】的更多相关文章

CNN 防止过拟合的方法 因为数据量的限制以及训练参数的增多,几乎所有大型卷积神经网络都面临着过拟合的问题,目前常用的防止过拟合的方法有下面几种:      1. data augmentation: 这点不需要解释太多,所有的过拟合无非就是训练样本的缺乏和训练参数的增加.     一般要想获得更好的模型,需要大量的训练参数,这也是为什么CNN网络越来越深的原因之一,而如果训练样本缺乏多样性,      那再多的训练参数也毫无意义,因为这造成了过拟合,训练的模型泛化能力相应也会很差.大量数据带来…
1. 防止过拟合的方法有哪些? 过拟合(overfitting)是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合. 产生过拟合问题的原因大体有两个:训练样本太少或者模型太复杂. 防止过拟合问题的方法: (1)增加训练数据. 考虑增加训练样本的数量 使用数据集估计数据分布参数,使用估计分布参数生成训练样本 使用数据增强 (2)减小模型的复杂度. a.减少网络的层数或者神经元数量.这个很好理解,介绍网络的层数或者神经元的数…
methods to avoid overfitting: Cross-Validation : Cross Validation in its simplest form is a one round validation, where we leave one sample as in-time validation and rest for training the model. But for keeping lower variance a higher fold cross vali…
原文链接:何恺明团队提出 Focal Loss,目标检测精度高达39.1AP,打破现有记录     呀 加入Facebook的何凯明继续优化检测CNN网络,arXiv 上发现了何恺明所在 FAIR 团队的最新力作:"Focal Loss for Dense Object Detection(用于密集对象检测的 Focal Loss 函数)". 孔涛博士在知乎上这么写道: 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模…
在使用机器学习对训练数据进行学习和分类的时候,会出现欠拟合和过拟合的问题.那么什么是欠拟合和过拟合问题呢?…
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y…
国外的文献汇总: <Network Traffic Classification via Neural Networks>使用的是全连接网络,传统机器学习特征工程的技术.top10特征如下: List of Attributes Port number server Minimum segment size client→server First quartile of number of control bytes in each packet client→server Maximum n…
http://www.cnblogs.com/bonelee/p/8528863.html 积神经网络的参数优化方法——调整网络结构是关键!!!你只需不停增加层,直到测试误差不再减少. 积神经网络(CNN)的参数优化方法 from:http://blog.csdn.net/u010900574/article/details/51992156   著名: 本文是从 Michael Nielsen的电子书Neural Network and Deep Learning的深度学习那一章的卷积神经网络…
1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素. 例子:Hulu的奢侈品广告主希望把广告定向投放给奢侈品用户.Hulu通过第三方的数据管理平台拿到了一部分奢侈品用户的数据,并以此为训练集和测试集,训练和测试奢侈品用户的分类模型,该模型的分类准确率超过了95%,但在实际广告…
2012年,Alex Krizhevsky.Ilya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LSVRC的冠军,且准确率远超第二名(top5错误率为15.3%,第二名为26.2%),引起了很大的轰动.AlexNet可以说是具有历史意义的一个网络结构,在此之前,深度学习已经沉寂了很长时间,自2012年AlexNet诞生之后,后面的ImageNet冠军都是用卷积神经网络(CNN)来做的,并且层次越来…
前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进History-CNN-GoogLeNet :Going Deeper with Convolutions :文章:Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准-----附有代码解析: 文章:深入浅出--网络模型中Inception的作用与结构全解析  科普一下…
类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽.CNN方法的多层结构,在保留边缘映射的数目的同时可以有效地降低"支持向量"的个数,是通过函数复合-因式分解得到的,至于要使用多少层的网络,每一层网神经元的个数,两层之间的链接方式,理论上也应该有一般的指导规则. 参考链接:人工机器:作…
本文相对于摘抄的文章已经有大量的修改,如有阅读不适,请移步原文. 以下摘抄转自于维基:基于深度学习的图像识别进展百度的若干实践 从没有感知域(receptive field) 的深度神经网络,到固定感知域的卷积神经网络,再到可变感知域的递归神经网络,深度学习模型在各种图像识别问题中不断演进. 曾经爆炸式增长的参数规模逐步得到有效控制,人们将关于图像的先验知识逐渐用于深度学习,大规模并行化计算平台愈加成熟,这些使我们能够从容应对大数据条件下的图像识别问题. CNN的二维处理递进结构天然适合图像处理…
神经网络的优化方法: 1.学习率的设置(指数衰减) 2.过拟合问题(Dropout) 3.滑动平均模型(参数更新,使模型在测试数据上更鲁棒) 4.批标准化(解决网络层数加深而产生的问题---如梯度弥散,爆炸等) 一.学习率的设置----指数衰减方法 通过指数衰减的方法设置GD的学习率.该方法可让模型在训练的前期快速接近较优解,又可保证模型在训练后期不会有太大的波动,从而更加接近局部最优. 学习率不能过大,可能让参数在极值两侧波动,不能过小,训练时间会过长. TensorFlow提供的方法:tf.…
转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神经网络基础(可以参考 Neural networks and deep learning 日后可能会在专栏发布自己的中文版笔记). RCNN (论文:Rich feature hierarchies for accurate object detection and semantic segment…
导言:    自2012年AlexNet在ImageNet比赛上获得冠军,卷积神经网络逐渐取代传统算法成为了处理计算机视觉任务的核心.    在这几年,研究人员从提升特征提取能力,改进回传梯度更新效果,缩短训练时间,可视化内部结构,减少网络参数量,模型轻量化, 自动设计网络结构等这些方面,对卷积神经网络的结构有了较大的改进,逐渐研究出了AlexNet.ZFNet.VGG.NIN.GoogLeNet和Inception系列.ResNet.WRN和DenseNet等一系列经典模型,MobileNet…
CNN结构演变总结(一)经典模型 CNN结构演变总结(二)轻量化模型 前言: 前两篇对一些经典模型和轻量化模型关于结构设计方面的一些创新进行了总结,在本文将对前面的一些结构设计的原则,作用进行总结. 本文将介绍两种提升模型的表示能力的结构或方式,模型的五条设计原则,轻量化模型的四个设计方式. 提升模型的表示能力的结构或方式 1."split-transform-merge"结构 这个概念来源于ResNeXt(2017年),在文中作了如下解释. 1) Split:将向量x分成低维嵌入表示…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=107) 环境说明 Windows 10 VSCode Python 3.8.10 Pytorch 1.8.1 Cuda 10.2 前言   在前文中,我们已经接触了两种回归模型,也接触了深度学习中的一些常见的概念.其中有趣的信息是,我们在<DL基础补全计划(二)---Softmax回归及示例…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…
http://blog.csdn.net/ljp1919/article/details/42556261 Neural Network Toolbox为各种复杂的非线性系统的建模提供多种函数和应用程序.该工具箱提供各种监督学习模型:前向反馈,径向基核函数和动态网络等模型.同时也提供自组织图和竞争层结构(competitive layers)的非监督学习模型.该工具箱具有设计.训练.可视化与仿真神经网络的功能.基于该工具箱可以进行数据拟合.模式识别.分类和时间序列预测及其动态系统的建模和控制.…
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,该图展示了机器对一个视频的认知效果.其总红色的字表示objects, 蓝色的字表示scenes,绿色的字表示activities. 图1 人工智能在视频上的应用主要一个课题是视频理解,努力解决“语义鸿沟”的问题,其中包括了:     · 视频…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
HInton第9课,这节课没有放论文进去.....如有不对之处还望指正.话说hinton的课果然信息量够大.推荐认真看PRML<Pattern Recognition and Machine Learning>. 摘自PRML中22页. 正文: 一.提高泛化方法的概述 在这部分中,将会介绍通过减少(当一个模型的数据表现能力大大的超过训练时提供的数据而产生的)过拟合来提高模型的泛化能力,将会介绍不同的方法去控制网络的数据表达能力,并介绍当我们使用这样一种方法的时候如何设置元参数,然后给出一个通过…
来自:https://www.zhihu.com/question/32246256 其实不完全是噪声和假规律会造成过拟合. (1)打个形象的比方,给一群天鹅让机器来学习天鹅的特征,经过训练后,知道了天鹅是有翅膀的,天鹅的嘴巴是长长的弯曲的,天鹅的脖子是长长的有点曲度,天鹅的整个体型像一个"2"且略大于鸭子.这时候你的机器已经基本能区别天鹅和其他动物了. (2)然后,很不巧你的天鹅全是白色的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅. (3…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
AlexNet的基本结构 Alexnet是由5个卷积层和三个全连接层组成,一共8个权重层(池化层不是权重层因为其没有参数),其中ReLU激活函数作用在每个卷积层和全连接层上,在第一个卷积层和第二个卷积层后面连接一个局部响应规范化层,最大池化层作用在第一个卷积层,第二个卷积层和第五个卷积层的输出上. ReLU 在AlexNet结构中抛弃了传统的's'形激活函数,而是选择了修正的线性单元作为激活函数也就是relu传统的's'形激活函数有f(x)=1/(1+e-x),f(x)=tanh(x),其中si…
这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟合问题,一般有两种思路,一种是用正则化方法,也就是限制模型的复杂度,比如Dropout.L1和L2正则化.早停和权重衰减(Weight Decay),一种是增大训练样本量,比如数据增强(Data Augmentation).这些方法的原理阐述可以看我之前整理的文章<深度学习之正则化方法>. 下面用…
随着科研人员在使用神经网络训练时不断的尝试,为我们留下了很多有用的技巧,合理的运用这些技巧可以使自己的模型得到更好的拟合效果. 一 利用异或数据集演示过拟合 全连接网络虽然在拟合问题上比较强大,但太强大的拟合效果也带来了其它的麻烦,这就是过拟合问题. 首先我们看一个例子,这次将原有的4个异或带护具扩充成了上百个具有异或特征的数据集,然后通过全连接网络将它们进行分类. 实例描述:构建异或数据集模拟样本,在构建一个简单的多层神经网络来拟合其样本特征,观察其出现前泥河的现象,接着通过增大网络复杂性的方…
过拟合,在Tom M.Mitchell的<Machine Learning>中是如何定义的:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据. 也就是说,某一假设过度的拟合了训练数据,对于和训练数据的分布稍有不同的数据,错误率就会加大.这一般会出现在训练数据集比较小的情况. 深度学习中避免过拟合的方法: Dropout      2012年ImageNet比赛的获胜模型A…
过拟合: 真实的应用中,并不是让模型尽量模拟训练数据的行为,而是希望训练数据对未知做出判断. 模型过于复杂后,模型会积极每一个噪声的部分,而不是学习数据中的通用 趋势.当一个模型的参数比训练数据还要多的时候,这个模型就可以记忆这个所以训练数据的结果,而使损失函数为0. 避免过拟合的常用方法:正则化.在损失函数中加入刻画模型复杂程度的指标.损失函数: J(θ) 引入正则化损失:J(θ)+λR(ω) λ代表模型复杂损失在总损失的比列,R(ω)刻画的是模型的复杂程度. 模型的复杂程度由权重决定,一般.…