分页框架pager-taglib学习笔记】的更多相关文章

一.问题与解决方案 通过多元分类算法进行手写数字识别,手写数字的图片分辨率为8*8的灰度图片.已经预先进行过处理,读取了各像素点的灰度值,并进行了标记. 其中第0列是序号(不参与运算).1-64列是像素值.65列是结果. 我们以64位像素值为特征进行多元分类,算法采用SDCA最大熵分类算法. 二.源码 先贴出全部代码: namespace MulticlassClassification_Mnist { class Program { static readonly string TrainDa…
一.要解决的问题 问题:常常一些单位或组织召开会议时需要录入会议记录,我们需要通过机器学习对用户输入的文本内容进行自动评判,合格或不合格.(同样的问题还类似垃圾短信检测.工作日志质量分析等.) 处理思路:我们人工对现有会议记录进行评判,标记合格或不合格,通过对这些记录的学习形成模型,学习算法仍采用二元分类的快速决策树算法,和上一篇文章不同,这次输入的特征值不再是浮点数,而是中文文本.这里就要涉及到文本特征提取. 为什么要进行文本特征提取呢?因为文本是人类的语言,符号文字序列不能直接传递给算法.而…
一.准备样本 接上一篇文章提到的问题:根据一个人的身高.体重来判断一个人的身材是否很好.但我手上没有样本数据,只能伪造一批数据了,伪造的数据比较标准,用来学习还是蛮合适的. 下面是我用来伪造数据的代码: string Filename = "./figure_full.csv"; StreamWriter sw = new StreamWriter(Filename, false); sw.WriteLine("Height,Weight,Result"); Ran…
一.序言 微软的机器学习框架于2018年5月出了0.1版本,2019年5月发布1.0版本.期间各版本之间差异(包括命名空间.方法等)还是比较大的,随着1.0版发布,应该是趋于稳定了.之前在园子里也看到不少相关介绍的文章,对我的学习提供了不少帮助.由于目前资料不是很丰富,所以学习过程中也走了不少弯路,本系列的文章主要记录我学习过程中的一些心得体会,并对一些细节会做详细的解释,希望能为机器学习零基础的同学提供一些帮助.(C#零基础可不行) 二.基本概念 1.什么是机器学习?定义:一个电脑程序要完成任…
一.概述 上一篇文章我们利用ML.NET的多元分类算法实现了一个手写数字识别的例子,这个例子存在一个问题,就是输入的数据是预处理过的,很不直观,这次我们要直接通过图片来进行学习和判断.思路很简单,就是写一个自定义的数据处理通道,输入为文件名,输出为float数字,里面保存的是像素信息. 样本包括6万张训练图片和1万张测试图片,图片为灰度图片,分辨率为20*20 .train_tags.tsv文件对每个图片的数值进行了标记,如下: 二.源码 全部代码: namespace MulticlassCl…
一.概述 通过之前两篇文章的学习,我们应该已经了解了多元分类的工作原理,图片的分类其流程和之前完全一致,其中最核心的问题就是特征的提取,只要完成特征提取,分类算法就很好处理了,具体流程如下: 之前介绍过,图片的特征是不能采用像素的灰度值的,这部分原理的台阶有点高,还好可以直接使用通过TensorFlow训练过的特征提取模型(美其名曰迁移学习). 模型文件为:tensorflow_inception_graph.pb 二.样本介绍 我随便在网上找了一些图片,分成6类:男孩.女孩.猫.狗.男人.女人…
一.概述 这次要解决的问题是输入一张照片,输出人物的颜值数据. 学习样本来源于华南理工大学发布的SCUT-FBP5500数据集,数据集包括 5500 人,每人按颜值魅力打分,分值在 1 到 5 分之间.其中包括男性.女性.中国人.外国人四个分类. SCUT-FBP5500_full.csv文件标记了每个图片人物的颜值打分数据.(我把分值一项乘以了20,变成了满分100分,不影响计算结果) 整个程序处理流程和前一篇图片分类的基本一致,唯一的区别,分类用的是多元分类算法,这次采用的是回归算法. 二.…
一.概述 本篇文章介绍通过YOLO模型进行目标识别的应用,原始代码来源于:https://github.com/dotnet/machinelearning-samples 实现的功能是输入一张图片,对图片中的目标进行识别,输出结果在图片中通过红色框线标记出来.如下: YOLO简介 YOLO(You Only Look Once)是一种最先进的实时目标检测系统.官方网站:https://pjreddie.com/darknet/yolo/ 本文采用的是TinyYolo2模型,可以识别的目标类型包…
一.概述 本篇我们首先通过回归算法实现一个葡萄酒品质预测的程序,然后通过AutoML的方法再重新实现,通过对比两种实现方式来学习AutoML的应用. 首先数据集来自于竞赛网站kaggle.com的UCI Wine Quality Dataset数据集,访问地址:https://www.kaggle.com/c/uci-wine-quality-dataset/data 该数据集,输入为一些葡萄酒的化学检测数据,比如酒精度等,输出为品酒师的打分,具体字段描述如下: Data fields Inpu…
SpringBoot和Java框架spring 学习笔记(十九):事务管理(注解管理)所讲的类似,使用@Transactional注解便可以轻松实现事务管理.…