2019/3/25 一元线性回归--梯度下降/最小二乘法_又名:一两位小数点的悲剧_ 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一样了,计算机虽然还是跟从现有语句/公式,但是在不断尝试中一步步接近目的地. 简单来说,梯度下降的目的在我看来还是要到达两系数的偏导数函数值为零的取值,因此,我们会从"任意一点"开始不断接近,由于根据之前最小二乘法的推导,可以说方差的公式应该算一个二次函数...?总之,这么理解的话就算只用中…
代码如下: # 梯度下降法模拟 import numpy as np import matplotlib.pyplot as plt plot_x = np.linspace(-1,6,141) # 计算损失函数对应的导数,即对y=(x-2.5)**2-1求导 def dJ(theda): return 2*(theda-2.5) # 计算theda对应的损失函数值 def J(theda): try: return (theda-2.5)**2-1 except: return float('…
2019/3/24 线性回归--最小二乘法公式法 暂时用python成功做出来了图像,但是其中涉及到的公式还是更多的来自于网络,尤其是最小二乘法公式中的两个系数的求解,不过目前看了下书高数也会马上提及(虽然可能不会讲这两个公式),但是运用的知识其实还是目前能够接受的:偏导,二元方程.乍一看其实也没什么,只是由于有了求和符号的干扰让计算显得复杂. 最小二乘法-公式推导 该博客中对其的推导看起来比较简洁容易接受,其中结尾公式的计算不难让人想到线性代数中的向量乘积运算,但是那样的表示方法我并不熟练,等…
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在现在所处的位置上找到一个能够保证我们下山最快的方向,然后向着该方向行走:每到一个新位置,重复地应用上述贪心策略,我们就可以顺利到达山底了.其实梯度下降法的运行过程和上述下山的例子没有什么区别,不同的是我们人类可以凭借我们的感官直觉,根据所处的位置来选择最佳的行走方向,而梯度下降法所依据的是严格的数学…
网上对于线性回归的讲解已经很多,这里不再对此概念进行重复,本博客是作者在听吴恩达ML课程时候偶然突发想法,做了两个小实验,第一个实验是采用最小二乘法对数据进行拟合, 第二个实验是采用梯度下降方法对数据集进行线性拟合,下面上代码: 最小二乘法: #!/usr/bin/env python #encoding:UTF-8 import numpy as np import matplotlib.pyplot as plt N=10 X=np.linspace(-3, 3, N) Y=(X+10.0)…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向进行搜索最小值)和随机梯度下降法(主要随机梯度下降,通过迭代运算,收敛到最小值) 2.随机梯度与批量梯度计算是梯度下降的两种比较常用的方法,随机梯度下降法计算效率较高,不过不太稳定,对于批量梯度下降法,虽然计算速度较慢,但是计算方向稳定,它一定会朝着我们最优化的方向不断的进行靠近计算,结合以上两种方…
梯度下降法是非常常见的优化方法,在神经网络的深度学习中更是必会方法,但是直接从深度学习去实现,会比较复杂.本文试图使用梯度下降来优化最简单的LSR线性回归问题,作为进一步学习的基础. import numpy as np import pandas as pd from numpy import * from pandas import * import matplotlib.pyplot as plt x = np.array([[1,2],[2,1],[3,2.5],[4,3], [5,4]…
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .tab…
上周在实验室里师姐说了这么一个问题,对于线性回归问题,最小二乘法和梯度下降方法所求得的权重值是一致的,对此我颇有不同观点.如果说这两个解决问题的方法的等价性的确可以根据数学公式来证明,但是很明显的这个说法是否真正的成立其实很有其它的一些考虑因素在里面,以下给出我个人的一些观点: 1. 首先,在讨论最小二乘法和梯度下降对某数据集进行线性拟合的结果是否相同的问题之前,我们应该需要确保该数据集合的确符合线性模型,如果不符合那么得出的结果将会是非常有意思的, 该种情况在之前的博客中已有介绍,下面给出网址…