数据库索引B+树】的更多相关文章

面试时无意间被问到了这个问题:数据库索引的存储结构一般是B+树,为什么不适用红黑树等普通的二叉树? 经过和同学的讨论,得到如下几个情况: 1. 数据库文件是放在硬盘上,每次读取数据库都需要在磁盘上搜索,因此需要考虑磁盘寻道时间,我们都知道磁盘寻道开销是非常大的.同时,索引一般也是非常大的,内存不能放下,因此也会放在磁盘上.(另外,还与局部性原理与磁盘预读有关系). 2. B+树所有的关键字都出现在叶子节点的链表(稠密索引)中,且链表中的关键字是有序的.非叶子节点只起索引作用(稀疏索引). 叶子节…
问题1.数据库为什么要设计索引?索引类似书本目录,用于提升数据库查找速度.问题2.哈希(hash)比树(tree)更快,索引结构为什么要设计成树型?加快查找速度的数据结构,常见的有两类:(1)哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1):(2)树,例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(lg(n)):可以看到,不管是读,还是写,哈希类型的索引都比树型的索引更快一些,那为什么,索引结构要设计成树型呢?索引设计成树型,和SQL的需求有关.对于…
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树: ⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An) 其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-…
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树:⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An)其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-1 所指…
引言 关于数据库索引,google一个oracle index,mysql index总 有大量的结果,其中很多的使用方法推荐,**索引之n条经典建议云云.笔者认为,较之借鉴,在搞清楚了自己的需求的基础上,对备选方案的原理有个尽可能深 入全面的了解会更有利于我们的选择和决策. 因为某种方案或者技术呈现出某种优势(包括可能没有被介绍到的一定存在的限制),不是定义出来的,而是因为其实现机制决定的.就像LinkedList和 ArrayList分别适用于什么应用不是docment里面定义的,是由其本身…
B-树和B+树的应用:数据搜索和数据库索引  B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树:⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An)其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指…
B树: B+树 1) B+-tree的磁盘读写代价更低 B+-tree的内部结点并没有指向关键字具体信息的指针.因此其内部结点相对B 树更小.如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多.一次性读入内存中的需要查找的关键字也就越多.相对来说IO读写次数也就降低了. 个盘快.当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间). 2) B+-tree的查询效率更加稳定 由于非终结点并不是最终指向文件内容的结点,而…
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树: ⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An) 其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-…
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用B+树! 学过数据结构的一般对最基础的树都有所认识,因此我们就从与我们主题更为相近的二叉查找树开始. 一.二叉查找树 (1)二叉树简介: 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 1.任意节点左子树不为空,则左子树的值均小于根节点的值: 2.任意节点右子…
一.B+树是什么 B+ 树是一种树型数据结构,通常用于数据库和操作系统的文件系统中.B+ 树的特点是能够保持数据稳定有序,其插入与修改操作拥有较稳定的对数时间复杂度.B+ 树元素自底向上插入,这与二叉树恰好相反. B+ 树的创造者Rudolf Bayer没有解释B代表什么.最常见的观点是B代表平衡(balanced),因为所有的叶子节点在树中都在相同的级别上.B也可能代表Bayer,或者是波音(Boeing),因为他曾经工作于波音科学研究实验室 1)B+树的节点 在 B+ 树中的节点通常被表示为…