传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\)这种东西变成组合数去求,具体来说就是\(n^k=\sum\limits_{i=1}^k\dbinom{n}{i}*S[k][i]*i!\),\(S\)表示第二类斯特林数,第二类斯特林数可以表示为有\(n\)个盒子要装\(m\)个小球,然后在给盒子和求加上编号就可以得出上面的式子.这样的话在根据帕斯卡…
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s memory limit per test 64 MB input galactic.in output standard output Altanie is a very large and strange country in Mars. People of Mars ages a lot. So…
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k·2^{\frac{n(n-1)}{2}}\] 因为有\(n\)个点,所以还要乘以一个\(n\) 所以,我们真正要求的就是: \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k\] 怎么做? 看到了\(i^k\)想到了第二类斯特林数 \[m^n=\sum_{i=0}^{m}…
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nj!·2^j(\frac{1}{j!}\sum_{k=0}^j(-1)^k·C_j^k·(j-k)^i)\] \[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k…
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边.然后通过组合意义来化简 然后就可以 O( k ^ 2 ) 算出答案了 另外化到后面其实有种产生 这里可以用另外一种方式化简 考虑其组合意义 相当于先从 n 个数中挑出 i 个数.然后再从 i 个数中取 j 个进行排列 其他数可选可不选 具体可以看 Click here #include<bits/s…
题目链接:https://vjudge.net/problem/HDU-2512 一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2572    Accepted Submission(s): 1741 Problem Description 因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们…
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权值为$V(R)=\sum\limits_{S\in R} W(S)$.求将n个物品划分成k个集合的所有方案的权值和. $n,k\le 2\cdot 10^5,w_i\le 10^9$ 题解:第二类斯特林数针是太好用辣! 显然每个物品都是独立的,所以我们只需要处理出每个物品被统计的次数即可,说白了就是…
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\),因此需要换别的方法. 注意到自然指数幂和第二林斯特林数之间的关系: \[n^k=\sum_{i=0}^k \begin{Bmatrix}k\\i\end{Bmatrix}{n\choose i}i!\] 那么将答案式化简 \[\begin{aligned} Ans_x&=\sum_{i=1}^N…
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 \choose 2}}n \sum\limits_{i = 0}^{n - 1} {n - 1 \choose i} i^k\] 显然要求 \[\sum\limits_{i = 0}^{n} {n \choose i} i^k\] 然后我就不知道怎么做了.. 翻翻题解 有这样一个结论: \[n^k…
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1933 Accepted Submission(s): 711 Problem DescriptionA Baidu’s engineer needs to anal…