OTSU算法学习 OTSU公式证明】的更多相关文章

OTSU算法学习   OTSU公式证明 1 otsu的公式如下,如果当前阈值为t, w0 前景点所占比例 w1 = 1- w0 背景点所占比例 u0 = 前景灰度均值 u1 = 背景灰度均值 u = w0*u0 + w1*u1  全局灰度均值 g = w0(u0-u)*(u0-u) + w1(u1-u)*(u1-u) = w0*(1 – w0)*(u0 - u1)* (u0 - u1) 目标函数为g, g越大,t就是越好的阈值.为什么采用这个函数作为判别依据,直观是这个函数反映了前景和背景的差值…
写这篇日志是拖了很久的事情,以前说要写些算法相关的文章给想学信息安全学(简称信安),密码学的同学提供些入门资料,毕竟这种知识教师上课也不会细讲太多(纯理论偏重),更不用说理解和应用了,说到RSA公钥(yue)算法的认识,我最早是在32个计算机中的重要算法中看到的,不过在后来自己查阅数学建模和算法导论上分别看到了其实现和说明,只可惜对数学部分的解释基本没有,可能这部分数论知识证明出来的意义不大(因为就算你不懂,记住公式也懂用),就算是我在实际应用中也是挑选特殊情况的欧拉函数以及内置特定素数生成来应…
主要讲解OTSU算法实现图像二值化:    1.统计灰度级图像中每个像素值的个数. 2.计算第一步个数占整个图像的比例. 3.计算每个阈值[0-255]条件下,背景和前景所包含像素值总个数和总概率(就是分别计算背景和前景下第一步和第二步的              和). 4.比较第三步前景和背景之间方差,找到最大的一个确定为选定的阈值. OTSU源码: 1 #include <opencv2/opencv.hpp> #include <iostream> #include <…
在图像处理实践中,将灰度图转化为二值图是非经常见的一种预处理手段. 在Matlab中,能够使用函数BW = im2bw(I, level)来将一幅灰度图 I.转化为二值图. 当中.參数level是一个介于0~1之间的值,也就是用于切割图像的阈值.默认情况下,它可取值是0.5. 如今问题来了,有没有一种依据图像自身特点来自适应地选择阈值的方法呢?答案是肯定的!我们今天就来介绍当中最为经典的Otsu算法(或称大津算法).该算法由日本科学家大津展之(Nobuyuki Otsu)于1979年提出.这个算…
简介: 大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出.从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大(何为类间方差?原理中有介绍). OTSU算法 OTSU算法也称最大类间差法,有时也称之为大津算法,由大津于1979年提出,被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响,因此在数字图像处理上得到了广泛的应用.它是按图像的灰度特性,将图像分成背景和前景两…
大津法是一种图像灰度自适应的阈值分割算法,是1979年由日本学者大津提出,并由他的名字命名的.大津法按照图像上灰度值的分布,将图像分成背景和前景两部分看待,前景就是我们要按照阈值分割出来的部分.背景和前景的分界值就是我们要求出的阈值.遍历不同的阈值,计算不同阈值下对应的背景和前景之间的类内方差,当类内方差取得极大值时,此时对应的阈值就是大津法(OTSU算法)所求的阈值. 何为类间方差? 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均…
算法的介绍 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分. 所以可以在二值化的时候采用otsu算法来自动选取阈值进行二值化.otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响.因此,使类间方差最大的分割意味着错分概率最小. http://blog.csdn.net/kfqcome/article…
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的是在给定范围内所有满足条件的\(x\),同时为了方便,我们只讨论\(p\)是奇质数的情况 前置定理 \(x^2 \equiv (x+p)^2 \pmod p\) 证明:\(x^2 \equiv x^2 + 2xp + p^2 \pmod p\)显然成立 对于\(x^2 \equiv n \pmod…
算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; } 计算1+2的值结果:3 进一步计算加减乘除 #include <conio.h> #include<stdio.h> int main(){ printf(+); printf(-); printf(*); printf(/); printf(/); getch(); ; } 结…
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降…