主成分分析法PCA的原理及计算 主成分分析法 主成分分析法(Principal Component Analysis),简称PCA,其是一种统计方法,是数据降维,简化数据集的一种常用的方法 它本身是一个非监督学习的算法,作用主要是用于数据的降维,降维的意义是挺重要的,除了显而易见的通过降维,可以提高算法的效率之外,通过降维我们还可以更加方便的进行可视化,以便于我们去更好的理解数据,可以发现更便于人类理解,主成分分析其一个很重要的作用就是去噪,有的时候,经过去噪以后再进行机器学习,效果会更好 我们…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解…
主要内容: 一.降维与PCA 二.PCA算法过程 三.PCA之恢复 四.如何选取维数K 五.PCA的作用与适用场合 一.降维与PCA 1.所谓降维,就是将数据由原来的n个特征(feature)缩减为k个特征(可能从n个中直接选取k个,也能根据这n个重新组合成k个).可起到数据压缩的作用(因而也就存在数据丢失). 2.PCA,即主成分分析法,属于降维的一种方法.其主要思想就是:根据原始的n个特征(也就是n维),重新组合出k个特征,且这k个特征能最大量度地涵盖原始的数据信息(虽然会导致信息丢失).有…
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维…
主成分分析法(PAC)的优化——选择主成分的数量 根据上一讲,我们知道协方差为① 而训练集的方差为②. 我们希望在方差尽可能小的情况下选择尽可能小的K值. 也就是说我们需要找到k值使得①/②的值尽可能小(≤0.01) 那么我们可以先令K = 1 然后进行主要成分分析,得到U reduce 和 Z 计算其比例是否小鱼0.01,如果不是就令K = 2 再进行计算. 直到找到使得比例满足的k的最小值. 不过,在octave中,我们也利用在调用svd函数时候,得到的 S,U ,V参数进行判断.S是一个n…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
机器学习笔记 多项式回归这一篇中,我们讲到了如何构造新的特征,相当于对样本数据进行升维. 那么相应的,我们肯定有数据的降维.那么现在思考两个问题 为什么需要降维 为什么可以降维 第一个问题很好理解,假设我们用KNN训练一些样本数据,相比于有1W个特征的样本,肯定是训练有1K个特征的样本速度更快,因为计算量更小嘛. 第二个问题,为什么可以降维.一个样本原先有1W个特征,现在减少到1K个,不管如何变换,数据包含的信息肯定是减少了,这是毫无疑问的.但是信息的减少是否意味着我们对于样本的认知能力的下降?…
主成分分析算法是最常见的降维算法,在PCA中,我们要做的是找到一个方向向量,然后我们把所有的数都投影到该向量上,使得投影的误差尽可能的小.投影误差就是特征向量到投影向量之间所需要移动的距离. PCA的目的是找到一个最下投影误差平方的低维向量,对原有数据进行投影,从而达到降维的目的. 下面给出主成分分析算法的描述: 问题是要将n维数据降至k维,目标是找出向量μ(k),使得投影误差最小. 主成分分析算法与线性回归类似,但区别是投影方式的不同. 如图所示,的左边的图是垂直与x轴进行的投影,这是线性回归…
一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便.如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的.盲目减少指标会损失很多信息,容易产生错误的结论. 因此需要找到一个合理的方法,在减少需要分析的指标同时,尽量减少原指…