混合前端seq2seq模型部署】的更多相关文章

混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在一个基于深度学习项目的研发阶段, 使用像PyTorch这样即时eager.命令式的界面进行交互能带来很大便利.这使用户能够在使用Python数据结构.控制流操作.打印语句和调试实用程序时,通过熟悉的.惯用的Python脚本编写. 尽管即时性界面,对于研究和试验应用程序是一个有用的工具,但是对于生产环…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处理与探索 所用的包 数据 探索性数据分析 回测:时间序列交叉验证 LSTM 模型 数据准备 用 recipe 做数据预处理 调整数据形状 构建 LSTM 模型 在所有分割上回测模型 时间序列深度学习:seq2seq 模型预测太阳黑子 本文翻译自<Time Series Deep Learning,…
产品环境模型部署,创建简单Web APP,用户上传图像,运行Inception模型,实现图像自动分类. 搭建TensorFlow服务开发环境.安装Docker,https://docs.docker.com/engine/installation/ .用配置文件在本地创建Docker镜像,docker build --pull -t $USER/tensorflow-serving-devel https://raw.githubusercontent.com/tensorflow/servin…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直接训练,并且运行. 包含预处理过的 twitter 英文数据集,训练,运行,工具代码,可以运行但是效果有待提高. 数据集 Twitter 数据集: https://github.com/suriyadeepan/datasets 训练 你需要新建一个 model 文件夹来保存训练完的模型 运行这个文…
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to-sequence (seq2seq) 模型,顾名思义,其输入是一个序列,输出也是一个序列,例如输入是英文句子,输出则是翻译的中文.seq2seq 可以用在很多方面:机器翻译.QA 系统.文档摘要生成.Image Captioning (图片描述生成器). 2. 基本框架 第一种结构 [参考1]论文…
神经网络.<Make Your Own Neural Network>,用非常通俗易懂描述讲解人工神经网络原理用代码实现,试验效果非常好. 循环神经网络和LSTM.Christopher Olah http://colah.github.io/posts/2015-08-Understanding-LSTMs/ . seq2seq模型基于循环神经网络序列到序列模型,语言翻译.自动问答等序列到序列场景,都可用seq2seq模型,用seq2seq实现聊天机器人的原理 http://suriyade…
https://zhuanlan.zhihu.com/p/27608348 更新:感谢@Gang He指出的代码错误.get_batches函数中第15行与第19行,代码已经重新修改,GitHub已更新. 前言 好久没有更新专栏,今天我们来看一个简单的Seq2Seq实现,我们将使用TensorFlow来实现一个基础版本的Seq2Seq,主要帮助理解Seq2Seq中的基础架构. 最基础的Seq2Seq模型包含了三个部分,即Encoder.Decoder以及连接两者的中间状态向量,Encoder通过…
一.seq2seq架构图 seq2seq模型左边绿色的部分我们称之为encoder,左边的循环输入最终生成一个固定向量作为右侧的输入,右边紫色的部分我们称之为decoder.单看右侧这个结构跟我们之前学习的语言模型非常相似,如下: 唯一不同的是,语言模型的输入a<0>是一个零向量,而seq2seq模型decoder部分的输入是由encoder编码得到的一个固定向量.所以可以称seq2seq模型为条件语言模型p(y|x). 语言模型生成的序列y是可以随机生成的,而seq2seq模型用于到机器翻译…