第一个GAN模型-生成手写数字 一.GAN的基础:对抗训练 形式上,生成器和判别器由可微函数表示如神经网络,他们都有自己的代价函数.这两个网络是利用判别器的损失记性反向传播训练.判别器努力使真实样本输入和伪样本输入带来的损失最小化,而生成器努力使它生成的为样本造成的判别器损失最大化. 训练数据集决定了生成器要学习模拟的样本类型,例如,目标是生成猫的逼真图像,我们就会给GAN提供一组猫的图像. 用更专业的术语来说,生成器的目标是生成符合训练数据集数据分布的样本.对计算机来说,图像只是矩阵:灰度图是…