首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
数值计算:Legendre多项式
】的更多相关文章
数值计算:Legendre多项式
Legendre多项式的概念以及正交特性在此不多作描述,可以参考数学物理方程相关教材,本文主要讨论在数值计算中对于Legendre多项式以及其导数的计算方法. Legendre多项式的计算 递推公式 \[\begin{align} (n+1)P_{n+1}(x)=(2n+1)x \cdot P_{n}(x)-nP_{n-1}(x) \qquad (n\ge2) \end{align} \] 通式可以用幂级数表示为以下形式: \[\begin{align} P_{n}(x)=\sum\limits…
Legendre多项式
Legendre多项式 时间限制: 1 Sec 内存限制: 128 MB 题目描述 Legendre多项式的递归公式…
通过实例学习 PyTorch
通过范例学习 PyTorch 本博文通过几个独立的例子介绍了 PyTorch 的基础概念. 其核心,PyTorch 提供了两个主要的特征: 一个 n-维张量(n-dimensional Tensor),类似 NumPy 但是可以运行在 GPU 设备上 构建和训练神经网络,可自动求微分 我们将使用三阶多项式去拟合 y=sin(x) 的问题作为我们的例子.神经网络将会有 4 个参数,并且将使用梯度下降通过最小化(minimizing)网络输出和真实输出的欧氏距离(Euclidean distance…
MR 图像分割 相关论文摘要整理
<多分辨率水平集算法的乳腺MR图像分割> 针对乳腺 MR 图像信息量大.灰度不均匀.边界模糊.难分割的特点, 提出一种多分辨率水平集乳腺 MR图像分割算法. 算法的核心是首先利用小波多尺度分解对图像进行多尺度空间分析, 得到粗尺度图像; 然后对粗尺度图像利用改进 CV 模型进行分割. 为了去除乳腺 MR 图像中灰度偏移场对分割效果的影响, 算法中引入局部拟合项, 并用核函数进一步改进 CV模型, 进而对粗尺度分割效果进行优化处理. 仿真和临床数据分割结果表明, 所提算法分割灰度不均匀图像具有较…
复化梯形求积分——用Python进行数值计算
用程序来求积分的方法有很多,这篇文章主要是有关牛顿-科特斯公式. 学过插值算法的同学最容易想到的就是用插值函数代替被积分函数来求积分,但实际上在大部分场景下这是行不通的. 插值函数一般是一个不超过n次的多项式,如果用插值函数来求积分的话,就会引进高次多项式求积分的问题.这样会将原来的求积分问题带到另一个求积分问题:如何求n次多项式的积分,而且当次数变高时,会出现龙悲歌现象,误差反而可能会增大,并且高次的插值求积公式有可能会变得不稳定:详细原因不赘述. 牛顿-科特斯公式解决这一问题的办法是将大的插…
Net数值计算MathNet.Numerics类库
一.Net自带的数值计算:System.Numerics 1.大整数BitInteger 方法:除数和余数.最大公约数 2.复数Complex 属性:实部.虚部.量值.相位 方法:共轭.倒数 二.MathNet.Numerics 1.组合Combinatorics 方法: Combinations计算无重复的组合数目 CombinationsWithRepetition计算带重复的组合数目 Permutations计算无重复的排列数目 Variations计算无重复的变化数目 Variation…
用递归方法求n阶勒让德多项式的值
/* Date: 07/03/19 15:40 Description: 用递归法求n阶勒让德多项式的值 { 1 n=0 Pn(x)= { x n=1 { ((2n-1).x-Pn-1(x)-(n-1).Pn-2(x)/n n>=1 */ #include<stdio.h> float Legendre(int x,int n); int main(void) { int x,n; float value; printf("Enter the o…
Python数值计算之插值曲线拟合-01
3 插值与曲线拟合 Interpolation and Curve Fitting 给定n+1个数据点(xi,yi), i = 0,1,2,…,n,评估y(x). 3.1 介绍(introduction) 离散数据集,或者形如下面的表格,常常在技术计算中用到,数据源可能来自于实验观察或者数值计算. 3.2 多项式插值(Polynomial Interpolation)插值和曲线拟合存在差别.对于插值,我们通过数据拟合一条曲线,在拟合过程中,我们潜在假设数据是精确的和独特的:对于曲线拟合,…
多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌套算法啊,见"Horner嵌套算法". 1. 单项式(Monomial)基插值 1)插值函数基 单项式基插值采用的函数基是最简单的单项式:$$\phi_j(t)=t^{j-1}, j=1,2,...n;\quad f(t)=p_{n-1}(t)=x_1+x_2t+x_3t^2+...x_n…
基于MATLAB的多项式数据拟合方法研究-毕业论文
摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式曲线拟合的基本理论,对多项式数据拟合原理进行了全方面的理论阐述,同时也阐述了曲线拟合的基本原理及多项式曲线拟合模型的建立.具体记录了多项式曲线拟合的具体步骤,在建立理论的基础上具体实现多项式曲线的MATLAB实现方法的研究,采用MATLAB R2016a的平台对测量的数据进行多项式数据拟合,介绍了M…