论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器接收到的混合信号中的声学回声.传统的方法是使用自适应有限脉冲响应(FIR)滤波器来识别房间脉冲响应(RIR),因为房间脉冲响应对各种野外场景都不具有鲁棒性.在本文中,我们提出了一种基于深度神经网络的回归方法,从近端和远端混合信号中提取的特征直接估计近端目标信号的幅值谱.利用深度学习强大的建模和泛化能…
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   1. 引言: 本文尝试用 基于四个方向的 RNN 来替换掉 CNN中的 convolutional layer(即:卷积+Pooling 的组合).通过在前一层的 feature 上进行四个方向的扫描,完成特征学习的过程. The recurrent layer ensures that each…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测信号和残差信号应用独立的CNN网络.采用标量量化和哈夫曼编码将量化后的特征映射编码为二进制流.本文采用固定的32×32块来证明我们的想法,并与已知的H.264/AVC视频编码标准进行了性能比较,具有可比较的率失真性能.这里使用结构相似性(SSIM)来测量失真,因为它更接近感知响应. I. INTRO…
论文原址:https://pdfs.semanticscholar.org/eeb7/c037e6685923c76cafc0a14c5e4b00bcf475.pdf 摘要 本文研究了利用深度神经网络及逆行自动语音识别(ASR)的语音模型,其输入是直接输入窗口形语音波(WSW).本文首先证明了,网络要实现自动化需要具有于梅尔频谱相类似的特征,(梅尔频谱是啥?参考,https://blog.csdn.net/qq_28006327/article/details/59129110),本文研究了挖掘…
论文地址:基于通用传递函数GSC和后置滤波的语音增强 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12232341.html 摘要 在语音增强应用中,麦克风阵列后置滤波可进一步减少波束形成器输出处的噪声成分.在麦克风阵列结构中,最近提出的通用传递函数广义旁瓣消除器(TF-GSC)在定向噪声场中显示出令人印象深刻的降噪能力,同时仍保持低语音失真.但是,在扩散噪声场中,可获得的降噪效果不明显.当噪声信号不稳定时,性能甚至会进一步下降. 在本文中…
目录 Abstract 1. Introduction 2.Related Work 3.Binary And Ternary Connect 3.1 BINARY CONNECT REVISITED 3.2 Ternary Connect 4.Quantized Back Propagation 5.Experiments 5.1 General Performance 5.2 Convergence 5.3 The effect of bit clipping 6.Conclusion An…
论文通过实现RNN来完成了文本分类. 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment: # -*- coding: utf-8 -*- # @time : 2019/11/9 15:12 import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable dtype = torch.F…
[code&data] [pdf] ARCT 任务是 Habernal 等人在 NACCL 2018 中提出的,即在给定的前提(premise)下,对于某个陈述(claim),相反的两个依据(warrant0,warrant1)哪个能支持前提到陈述的推理. 他们还在 SemEval-2018 中指出,这个任务不仅需要模型理解推理的结构,还需要一定的外部知识. 作者尝试使用 BERT 处理该任务,调整输入为 [CLS,Claim,Reason,SEP,Warrant],通过共用的 linear l…
论文翻译:https://arxiv.53yu.com/abs/2009.13931 基于高效多任务卷积神经网络的残余回声抑制 摘要 在语音通信系统中,回声会降低用户体验,需要对其进行彻底抑制.提出了一种利用卷积神经网络实现实时残余回声抑制(RAES)的方法.在多任务学习的背景下,采用双语音检测器作为辅助任务来提高性能.该训练准则基于一种新的损失函数,我们称之为抑制损失,以平衡残余回声的抑制和近端信号的失真.实验结果表明,该方法能有效抑制不同情况下的残余回声. 关键字:残余回声抑制,卷积神经网络…