参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用"编码网络(encoder network)"+"解码网络(decoder network)"两个RNN模型组合的形式来解决. encoder network将输入语句编码为一个特征向量,传递给decoder network,完成翻译.具体模型结构如下图所示: 其中,encoder…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence architectures) 首先,我们先建立一个网络,这个网络叫做编码网络(encoder network)(上图编号 1 所示),它是一个 RNN 的结构, RNN 的单元可以是 GRU 也可以是 LSTM.每次只向该网络中输入一个法语单词,将输入序列接收完毕后,这个 RNN 网络会输出一个向量来代表…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequence to sequence)模型,从机器翻译到语音识别,它们都能起到很大的作用,从最基本的模型开始.之后你还会学习集束搜索(Beam search)和注意力模型(Attention Model),一直到最后的音频模型,比如语音. 现在就开始吧,比如你想通过输入一个法语句子,比如这句 "Jane…
参考1 参考2 参考3 1. 为什么选择序列模型 序列模型能够应用在许多领域,例如: 语音识别 音乐发生器 情感分类 DNA序列分析 机器翻译 视频动作识别 命名实体识别 这些序列模型都可以称作使用标签数据(X,Y)作为训练集的监督式学习,输入x和输出y不一定都是序列模型.如果都是序列模型的话,模型长度不一定完全一致. 2. Notation(标记) 下面以 命名实体识别 为例,介绍序列模型的命名规则.示例语句为: Harry Potter and Hermione Granger invent…
Deep Learning 用逻辑回归训练图片的典型步骤. 笔记摘自:https://xienaoban.github.io/posts/59595.html 1. 处理数据 1.1 向量化(Vectorization) 将每张图片的高和宽和RGB展为向量,最终X的shape为 (height*width*3, m) . 1.2 特征归一化(Normalization) 对于一般数据,使用标准化(Standardization) \(X_{scale} = \frac{(X(axis=0) -…
参考:https://blog.csdn.net/red_stone1/article/details/78600255https://blog.csdn.net/red_stone1/article/details/78600255 1. error analysis 举个例子,猫类识别问题,已经建立的模型的错误率为10%.为了提高正确率,我们发现该模型会将一些狗类图片错误分类成猫.一种常规解决办法是扩大狗类样本,增强模型对够类(负样本)的训练.但是,这一过程可能会花费几个月的时间,耗费这么大…
Sequence to Sequence models basic sequence-to-sequence model: basic image-to-sequence or called image captioning model: but there are some differences between how you write a model like this to generate a sequence, compared to how you were synthesizi…
1. 基础模型 A. Sequence to sequence model:机器翻译.语音识别.(1. Sutskever et. al., 2014. Sequence to sequence learning with neural networks.   2. Cho et. al., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.) B…
Expected OutputTrigger Word Detection Welcome to the final programming assignment of this specialization! In this week's videos, you learned about applying deep learning to speech recognition. In this assignment, you will construct a speech dataset a…
Neural Machine Translation Welcome to your first programming assignment for this week! You will build a Neural Machine Translation (NMT) model to translate human readable dates ("25th of June, 2009") into machine readable dates ("2009-06-25…