Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调优 Spark面试题(七)--Spark程序开发调优 Spark面试题(八)--Spark的Shuffle配置调优 1.程序开发调优 :避免创建重复的RDD 需要对名为"hello.txt"的HDFS文件进行一次map操作,再进行一次reduce操作.也就是说,需要对一份数据执行两次算子操…
摘抄自:https://tech.meituan.com/spark-tuning-basic.html 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速…
Spark调优主要分为开发调优.资源调优.数据倾斜调优.shuffle调优几个部分.开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础:数据倾斜调优,主要讲解了一套完整的用来解决Spark作业数据倾斜的解决方案:shuffle调优,面向的是对Spark的原理有较深层次掌握和研究的同学,主要讲解了如何对Spark作业的shuffle运行过程以及细节进行调优. 本文作为Spark性能优化指南的基础篇,主要讲解开发调优以及资源调优. 一 开发调优 调优概…
1.前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Sp…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar…
参考: https://tech.meituan.com/spark-tuning-basic.html https://zhuanlan.zhihu.com/p/22024169 一.开发调优 1.避免创建重复RDD 对于同一份数据,只应该创建一个RDD,不要创建多个RDD来代表同一份数据. 2.尽可能复用同一个RDD 多个RDD的数据有重叠或者包含的情况,我们应该尽量复用一个RDD,这样可以尽可能地减少RDD的数量,从而尽可能减少算子执行的次数 3.对多次使用的RDD进行持久化 Spark的…
转自:https://blog.csdn.net/xingzheouc/article/details/49946191 1. UDP概念 用户数据报协议(英语:User Datagram Protocol,缩写为 UDP),又称使用者资料包协定,是一个简单的面向数据报的传输层协议,正式规范为RFC 768 在TCP/IP模型中,UDP为网络层以上和应用层以下提供了一个简单的接口.UDP只提供数据的不可靠传递,它一旦把应用程序发给网络层的数据发送出去,就不保留数据备份(所以UDP有时候也被认为是…
一.前述 Spark内存管理 Spark执行应用程序时,Spark集群会启动Driver和Executor两种JVM进程,Driver负责创建SparkContext上下文,提交任务,task的分发等.Executor负责task的计算任务,并将结果返回给Driver.同时需要为需要持久化的RDD提供储存.Driver端的内存管理比较简单,这里所说的Spark内存管理针对Executor端的内存管理. Spark内存管理分为静态内存管理和统一内存管理,Spark1.6之前使用的是静态内存管理,S…
SparkStreaming性能调优 合理的并行度 减少批处理所消耗时间的常见方式还有提高并行度.有以下三种方式可以提高并行度: 1.增加接收器数目 有时如果记录太多导致单台机器来不及读入并分发的话,接收器会成为系统瓶颈.这时你就需要通过创建多个输入DStream(这样会创建多个接收器)来增加接收器数目,然后使用union 来把数据合并为一个数据源. 2.将收到的数据显式地重新分区 如果接收器数目无法再增加,你可以通过使用DStream.repartition 来显式重新分区输入流(或者合并多个…
1. 数据序列化 默认使用的是Java自带的序列化机制.优点是可以处理所有实现了java.io.Serializable 的类.但是Java 序列化比较慢. 可以使用Kryo序列化机制,通常比Java 序列化机制性能高10倍.但是并不支持所有实现了java.io.Serializable 的类.使用 conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer") 开启Kryo序列化…