UVA294 约数 Divisors 题解】的更多相关文章

Content 给定 \(n\) 个区间 \([l,r]\),求出每个区间内约数个数最大的数. 数据范围:\(1\leqslant l<r\leqslant 10^{10}\),\(r-l\leqslant 10^4\). Solution 你可能需要在做这题目前了解一下约数个数定理.何谓约数个数定理? 设一个数 \(x\) 的个数可以分解为若干个质因数相乘的积,即: \[x=\prod\limits_{i=1}^k p_i^{a_i} \] 那么 \(x\) 的约数个数 \(f(x)\) 有一…
题目 约数和 题解 此题可以说完全就是一道数学题,不难看出这道题所求的是 \(\sum\limits_{i=x}^{y}{\sum\limits_{d|i}{d}}\) 的值. 很显然,用暴力枚举肯定会超时.所以我们可以反过来思考,采用枚举约数的方法,对于每个数 \(d\) , \(1\) 到 \(n\) 间满足是\(d\)的倍数的共有\(\lfloor \frac{n}{d} \rfloor\)个数.我们可以构造一个函数 \[f(n)=\sum\limits_{i=1}^{n}{\sum\li…
转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子的数的个数 但在1~n中含有“2”这个因子的数有n/2个,3有n/3个,以此类推,公式就出来了 代码: #include<iostream> using namespace std; int n,ans; int main() { cin>>n; ;i<=n;i++)ans+=n…
题目描述 定义 \(d(n)\) 为 \(n\) 的正因数的个数,比如 \(d(2) = 2, d(6) = 4\). 令 $ S_1(n) = \sum_{i=1}^n d(i) $ 给定 \(n\),求 \(S_1(n)\). 输入格式 第一行包含一个正整数 \(T\) (\(T \leq 10^5\)),表示数据组数. 接下来的 \(T\) 行,每行包含一个正整数 \(n\) (\(n < 2^{63}\)). 输出格式 对于每个 \(n\),输出一行一个整数,表示 \(S_1(n)\)…
Content 给定一个数 \(n\),求出 \(n\) 最大的可以表示成 \((2^k-1)\cdot2^{k-1}\) 形式的因数 \(x\). 数据范围:\(1\leqslant n\leqslant 10^5\). Solution 数据范围很小,所以我们先考虑将 \(10^5\) 以内的能够表示成 \((2^k-1)\cdot2^{k-1}\) 形式的数全部通过打表生成出来.而且打完以后,我们发现,事实上满足这个条件的数在 \(10^5\) 以内只有 \(8\) 个:\(1,6,28,…
Codeforces Round #182 (Div. 1) D:http://codeforces.com/contest/301/problem/D 题意:给一个1-n,n个数的序列,然后查询一个区间[l,r],问这个区间内有多少对:一个数是另外一个数的约数. 题解:这样的题目做的太少,自己也知道要用离线的数据结构,但是始终想不来,看了别人的代码也是半天没有看懂,最后还是请教了别人,才稍微明白一点.首先,对于[l,r]之间的数对来说,可以把1--r的数对减去1--l-1的数对,这是肯定的,但…
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\) 其中\(d(x)\)是\(x\)的约数个数 题解 orz ZSY 巨佬 根据玄学(我也不知道为什么)的公式 \[d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]\] 所以,所求等于 \[\sum_{i=1}^n\sum_{j=1}^m\sum_{u|i}\sum_{v|j}[…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1968 题意概括 求 ΣF(i)   (1<=i<=n)N<=1000000 F(i)是i的约数个数 题解 换一个角度思考,可以把原问题转化为: 对于每一i,在1~n中有多少个倍数,所有的个数和就是答案. 那么,ΣF(i) = ∑ floor(n/i) 代码 #include <bits/stdc++.h> int n,ans=0; int main(){ scanf(&quo…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
题意 有一个\((L+1)*n\) 的网格图,初始时白兔在\((0,X)\) , 每次可以向横坐标递增,纵坐标随意的位置移动,两个位置之间的路径条数只取决于纵坐标,用\(w(i,j)\) 表示,如果要求白兔停下的点纵坐标为\(Y\) 依次输出移动的步数对\(k\) 取模为 $0 - k -1 $的方案数: \(p\)为质数且$10^8 \lt p \lt 2^{30} , 1 \le n \le 3 , 1 \le x , y \le n , 0 \le w(i,j) \lt p , 1 \le…