opencv中的meanshift图像切割】的更多相关文章

Meanshift(均值漂移)是一种在一组数据的密度分布中寻找局部极值的稳定的方法.Meanshift不仅能够用于图像滤波,视频跟踪,还能够用于图像切割. 通过给出一组多维数据点,其维数是(x,y,r,g,b),均值漂移能够用一个窗体扫描空间来找到数据密度最大的区域,能够理解为数据分布最集中的区域. 在这里须要注意,因为空间位置(也就是上面的x和y)的变化范围与颜色的变化范围(上面的r,g,b)有极大的不同,所以,meanshift对这两个维数要採用不同的窗体半径.在opencv自带的means…
阅读对象:无要求. 1.代码 ''' OpenCV中的轮廓 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度.为了更加准确,要使用二值化图像.在寻找轮廓之前,要进行阈值化处理或者 Canny 边界检测. cv2.findContours()在一个二值图像中查找轮廓 有三个参数: 第一个:输入图像; 第二个:轮廓检索模式; 第三个:轮廓近似方法 cv2.CHAIN_APPROX_NONE:所有的边界点都会被存储.但是我们真的需要这么多点吗?例如,当我们找的边界是一条直…
ROI(region of interest)——感兴趣区域. 1.用途 这个区域是图像分析所关注的重点.圈定这个区域,以便进行进一步的处理.而且,使用ROI指定 想读入的目标,可以减少处理时间,增加精度,给图像处理带来不小的便利. 2.定义ROI方法 使用表示矩阵区域的Rect. 它指定矩阵的左上角坐标(构造函数的前两个参数)和矩阵的长宽(构造函数的后两个参数)以定义一个矩阵区域. // 定义一个Mat类型并给定其设定的区域 Mat imageROI; // 方法一 imageROI = im…
阅读对象:对概率论中的期望有一点了解. 1.图像几何矩 1.1简述 图像的几何矩包括空间矩.中心矩和中心归一化矩.几何矩具有平移.旋转和尺度不变性,一般是用来做大粒度的区分,用来过滤显然不相关的图像. 1.2用数学语言阐述图像的几何矩 针对于一幅图像,我们把像素的坐标看成是一个二维随机变量(X,Y),那么一幅灰度图像可以用二维灰度密度函数来表示,每个像素点的值可以看成是该处的密度,对某点求期望就是该图像在该点处的矩(原点矩),一阶矩和零阶矩可以计算某个形状的重心,二阶矩可以计算形状的方向,因此可…
本章我们学习LBP图像的原理和使用,因为接下来教程我们要使用LBP图像的直方图来进行脸部识别. 参考资料: http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html http://www.cnblogs.com/mikewolf2002/p/3438166.html       LBP的基本思想是以图像中某个像素为中心,对相邻像素进行阈值比较.如果中心像素的亮度大于等于它的相邻像素,把相邻像素标记为1,否则标…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5102032.html 参考网址: http://blog.csdn.net/abcjennifer/article/details/7401921 实际上opencv中有自带的直方图均衡的程序. #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgpro…
在做图像处理中,常用的函数接口有OpenCV中的Mat图像类,有时候需要直接用二维指针开辟内存直接存储图像数据,有时候需要用到CxImage类存储图像.本文主要是总结下这三类存储方式之间的图像数据的转换和相应的对应关系. 一.OpenCV的Mat类到图像二值指针的转换 以下为函数代码: unsigned char** MatTopImgData(Mat img) { //获取图像参数 int row = img.rows; int col = img.cols; int band = img.c…
部分 VI视频分析 OpenCV-Python 中文教程(搬运)目录 39 Meanshift 和 和 Camshift 目标 • 本节我们要学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象39.1 Meanshift Meanshift 算法的基本原理是和很简单的.假设我们有一堆点(比如直方图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗口移动到最大灰度密度处(或者是点最多的地方).如下图所示: 初始窗口是蓝色的“C1”,它的圆心为蓝色方…
前言 本文将主要讲解如何使用 OpenCV 实现图像分割,这也是图像金字塔在 OpenCV 中的一个重要应用. 关于图像分割 在计算机视觉领域,图像分割(Segmentation)指的是将数字图像细分为多个图像子区域(像素的集合)(也被称作超像素)的过程.图像分割的目的是简化或改变图像的表示形式,使得图像更容易理解和分析.[1]图像分割通常用于定位图像中的物体和边界(线,曲线等).更精确的,图像分割是对图像中的每个像素加标签的一个过程,这一过程使得具有相同标签的像素具有某种共同视觉特性. 图像分…
先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255白色标记 2.相同对阈值化后的图像进行膨胀,然后再阈值化并取反.得到背景区域. 并用128灰度表示 3.将前景和背景叠加在一起在同一幅图像中显示. 4.用标记图和原图,利用opencv的watershed对图像进行切割. 源代码 class WatershedSegment{ private: cv…