FpGrowth算法】的更多相关文章

前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本文将介绍一种专门检索频繁项集的新算法 - FP-growth 算法. 它只会扫描数据集两次,能循序挖掘出频繁项集.因此这种算法在网页信息处理中占据着非常重要的地位. FP-growth 算法基本原理 将数据存储到一种成为 FP 树的数据结构中,这样的一棵树包含了数据集中满足最小支持度阈值的所有节点信…
FP-Growth算法 FP-Growth(频繁模式增长)算法是韩家炜老师在2000年提出的关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree),但仍保留项集关联信息:该算法和Apriori算法最大的不同有两点:第一,不产生候选集,第二,只需要两次遍历数据库,大大提高了效率. 算法伪代码 算法:FP-增长.使用FP-树,通过模式段增长,挖掘频繁模式. 输入:事务数据库D:最小支持度阈值min_sup. 输出:频繁模式的完全集. 1. 按以下步骤构造FP-…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growth算法 FP-growth算法的性能很好,只需要扫描两次数据集,就能生成频繁项集.但不能用于发现关联规则. 我想应该可以使用Apriori算法发现关联规则. FP代表频繁模式(Frequent Pattern). 条件模式基(conditional pattern base). 条件模式基是以所查找元素项为结…
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力.今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多. FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成候选集合,所以效率会比较高.我们还是以上一篇中…
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章节标题所示,这两章讲了无监督机器学习方法中的关联分析问题.关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题.书中举了一些关联分析的例子: 通过查看哪些商品经常在一起购买,可以帮助商店了解用户的购买行为.这种从数据海洋中抽取的知识可以用于商品定价.市场促销.存活管理等环节. 在美国…
前言: 关于 FP-Growth 算法介绍请见:FP-Growth算法的介绍. 本文主要介绍从 FP-tree 中提取频繁项集的算法.关于伪代码请查看上面的文章. FP-tree 的构造请见:FP-Growth算法之 FP-tree 的构造(python). 正文: tree_miner.py\color{aqua}{tree\_miner.py}文件: #coding=utf-8 import tree_builder import copy class Tree_miner(object):…
算法实现: /** * FPGrowth算法的主要思想: * 1. 构造频繁1项集:遍历初始数据集构造频繁1项集,并作为项头表,建立将指向fpTree节点对应元素的引用 * 2. 构造FPTree:再次遍历初始数据集,对于每一条事务中的元素,根据频繁1项集中元素的顺序排序, * 由此建立FPTree,记录每条事务的节点在同一条路径上出再的节点次数; * 3. 逆序遍历在步骤1中构造的项头表,根据其提供的引用指针,找出fpTree中由该节点到根节点的路径, * 即生成每个频繁元素的条件模式基 *…
FpGrowth算法 频繁项集与关联规则挖掘(2)--FpGrowth算法   上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力.今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多. FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描…
关联分析又称关联挖掘,就是在交易数据.关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式.关联.相关性或因果结构.关联分析的一个典型例子是购物篮分析.通过发现顾客放入购物篮中不同商品之间的联系,分析顾客的购买习惯.比如,67%的顾客在购买尿布的同时也会购买啤酒.通过了解哪些商品频繁地被顾客同时购买,可以帮助零售商制定营销策略.关联分析也可以应用于其他领域,如生物信息学.医疗诊断.网页挖掘和科学数据分析等. 1. 问题定义 图1 购物篮数据的二元表示 图1表示顾客的购物篮数据,其…
FP-Growth是一种常被用来进行关联分析,挖掘频繁项的算法.与Aprior算法相比,FP-Growth算法采用前缀树的形式来表征数据,减少了扫描事务数据库的次数,通过递归地生成条件FP-tree来挖掘频繁项.参考资料[1]详细分析了这一过程.事实上,面对大数据量时,FP-Growth算法生成的FP-tree非常大,无法放入内存,挖掘到的频繁项也可能有指数多个.本文将分析如何并行化FP-Growth算法以及Mahout中并行化FP-Growth算法的源码. 1. 并行化FP-Growth 并行…
第12章 使用FP-growth算法来高效发现频繁项集 前言 在 第11章 时我们已经介绍了用 Apriori 算法发现 频繁项集 与 关联规则.本章将继续关注发现 频繁项集 这一任务,并使用 FP-growth 算法更有效的挖掘 频繁项集. FP-growth 算法简介 一种非常好的发现频繁项集算法. 基于Apriori算法构建,但是数据结构不同,使用叫做 FP树 的数据结构结构来存储集合.下面我们会介绍这种数据结构. FP-growth 算法步骤 基于数据构建FP树 从FP树种挖掘频繁项集…
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规则挖掘使用基于有趣性度量标准的FP-Growth算法,序列模式挖掘使用基于有趣性度量标准的GSP算法.若想实现以上优化算法,首先必须了解其基本算法,并编程实现.关键点还是在于理解算法思想,只有懂得了算法思想,对其进行优化操作易如反掌.源代码方面,其实是自己从网络中查找并进行阅读,在理解的基础上进行优…
第十二章 使用FP-growth算法高效的发现频繁项集 一.导语 FP-growth算法是用于发现频繁项集的算法,它不能够用于发现关联规则.FP-growth算法的特殊之处在于它是通过构建一棵Fp树,然后从FP树上发现频繁项集. FP-growth算法它比Apriori算法的速度更快,一般能够提高两个数量级,因为它只需要遍历两遍数据库,它的过程分为两步: 1.构建FP树 2.利用FP树发现频繁项集 二.FP树 FP树它的形状与普通的树类似,树中的节点记录了一个项和在此路径上该项出现的频率.FP树…
1. 关联分析是什么? Apriori和FP-growth算法是一种关联算法,属于无监督算法的一种,它们可以自动从数据中挖掘出潜在的关联关系.例如经典的啤酒与尿布的故事.下面我们用一个例子来切入本文对关联关系以及关联分析的讨论. 0x1:一个购物篮交易的例子 许多商业企业在日复一日的运营中积聚了大量的交易数据.例如,超市的收银台每天都收集大量的顾客购物数据. 例如,下表给出了一个这种数据集的例子,我们通常称其为购物篮交易(market basket transaction).表中每一行对应一个交…
FP-Growth算法的目标是发现模式,其特点就是高效,因为可以通过设置发生频次直接过滤掉一些低频次的元素:而且秉承了和Apriori的思想,对于低频次的元素,其父级和子级的组合都是低频的. FP-Growth利用的树结构:在发现模式的过程就是一个不断构建树的过程.其核心组成是两部分,一个就是FPTree,另外一个是headTable:我们首先来说一下HeadTable,HeadTable的数据结构是字典,key值是每个单元素(商品),value是一个二元组,分别是这个单品出现的次数以及商品树(…
关联规则挖掘最典型的例子是购物篮分析,通过分析可以知道哪些商品经常被一起购买,从而可以改进商品货架的布局. 1. 基本概念 首先,介绍一些基本概念. (1) 关联规则:用于表示数据内隐含的关联性,一般用X表示先决条件,Y表示关联结果. (2) 支持度(Support):所有项集中{X,Y}出现的可能性. (3) 置信度(Confidence):先决条件X发生的条件下,关联结果Y发生的概率. 2. Apriori算法 Apriori算法是常用的关联规则挖掘算法,基本思想是: (1) 先搜索出1项集…
1 关联分析 无监督机器学习方法中的关联分析问题.关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题. 2 Apriori算法   频繁项集即出现次数多的数据集   支持度就是几个关联的数据在数据集中出现的次数占总数据集的比重.或者说几个数据关联出现的概率.   置信度体现了一个数据出现后,另一个数据出现的概率,或者说数据的条件概率   提升度表示含有Y的条件下,同时含有X的概率,与X总体发生的概率之比   Apriori算法采用了迭代的方法,先搜索出候选1项集及对应的支持度,…
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.c…
常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth.Apriori通过不断的构造候选集.筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下.FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高. FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建.挖掘频繁项集. FP树表示法 FP树通过逐个读…
FP-growth算法高效发现频繁项集(Python代码) http://blog.csdn.net/leo_xu06/article/details/51332428…