Accord.Net中决策树】的更多相关文章

Accord.Net中决策树 决策树介绍 决策树是一类机器学习算法,可以实现对数据集的分类.预测等.具体请阅读我另一篇博客(http://www.cnblogs.com/twocold/p/5424517.html). Accord.Net Accord.Net(http://accord-framework.net/)是一个开源的.Net环境下实现的机器学习算法库.并且还包括了计算机视觉.图像处理.数据分析等等许多算法,并且基本上都是用C#编写的,对于.Net程序员十分友好.代码在Github…
决策树介绍 决策树是一类机器学习算法,可以实现对数据集的分类.预测等.具体请阅读我另一篇博客(http://www.cnblogs.com/twocold/p/5424517.html). Accord.Net Accord.Net(http://accord-framework.net/)是一个开源的.Net环境下实现的机器学习算法库.并且还包括了计算机视觉.图像处理.数据分析等等许多算法,并且基本上都是用C#编写的,对于.Net程序员十分友好.代码在Github托管,并且现在仍在维护中.(h…
1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classification Example. """ from __future__ import print_function from pyspark import SparkContext from pyspark.mllib.tree import DecisionTree, Decisi…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
继上篇文章决策树之 ID3 与 C4.5,本文继续讨论另一种二分决策树 Classification And Regression Tree,CART 是 Breiman 等人在 1984 年提出的,是一种应用广泛的决策树算法,不同于 ID3 与 C4.5, CART 为一种二分决策树, 每次对特征进行切分后只会产生两个子节点,而ID3 或 C4.5 中决策树的分支是根据选定特征的取值来的,切分特征有多少种不同取值,就有多少个子节点(连续特征进行离散化即可).CART 设计回归与分类,接下来将分…
我们这个系列主要为了了解并会使用Accord.NET中机器学习有关算法,因此主要关注的是算法针对的的问题,算法的使用.所以主要以代码为主,通过代码来学习,在脑海中形成一个轮廓.下面就言归正传,开始贝叶斯分类器的学习. 朴素贝叶斯分类器,一个基于贝叶斯理论的简单概率分类器.简单的说,贝叶斯理论是独立特征模型,也就是说一个类别的指定特征的表现与否,跟其他任何特征无关. TestCase1 著名的打网球实验(Tom Mitchell (1998)).实验中,基于四个条件,推测某人是否想去打网球.这些条…
本文介绍如何利用决策树/判定树(decision tree)中决策树归纳算法(ID3)解决机器学习中的回归问题.文中介绍基于有监督的学习方式,如何利用年龄.收入.身份.收入.信用等级等特征值来判定用户是否购买电脑的行为,最后利用python和sklearn库实现了该应用. 1.  决策树归纳算法(ID3)实例介绍 2.  如何利用python实现决策树归纳算法(ID3) 1.决策树归纳算法(ID3)实例介绍 首先介绍下算法基本概念,判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属…
一:sklearn中决策树的参数: 1,criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来选择最合适的节点. 2,splitter: ”best” or “random”(default=”best”)随机选择属性还是选择不纯度最大的属性,建议用默认. 3,max_features: 选择最适属性时划分的特征不能超过此值. 当为整数时,即最大特征数:当为小数时,训练集特征数*小数: if…
决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种.看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多. 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据. 缺点:可能会产生过度匹配的问题. 使用数据类型:数值型和标称型. 简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”. 一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别. 为了解决这个问题,同…
概述 分类决策树模型是一种描述对实例进行分类的树形结构. 决策树可以看为一个if-then规则集合,具有“互斥完备”性质 .决策树基本上都是 采用的是贪心(即非回溯)的算法,自顶向下递归分治构造. 生成决策树一般包含三个步骤:  特征选择 决策树生成 剪枝 决策树算法种类 决策树主要有 ID3, C4.5, C5.0 and CART几种, ID3, C4.5, 和CART实际都采用的是贪心(即非回溯)的算法,自顶向下递归分治构造.对于每一个决策要求分成的组之间的“差异”最大.各种决策树算法之间…