RNN,LSTM,GRU基本原理的个人理解】的更多相关文章

记录一下对RNN,LSTM,GRU基本原理(正向过程以及简单的反向过程)的个人理解 RNN Recurrent Neural Networks,循环神经网络 (注意区别于recursive neural network,递归神经网络) 为了解决DNN存在着无法对时间序列上的变化进行建模的问题(如自然语言处理.语音识别.手写体识别),出现的另一种神经网络结构——循环神经网络RNN. RNN结构 第tt层神经元的输入,除了其自身的输入xtxt,还包括上一层神经元的隐含层输出st−1st−1每一层的参…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
概括:RNN 适用于处理序列数据用于预测,但却受到短时记忆的制约.LSTM 和 GRU 采用门结构来克服短时记忆的影响.门结构可以调节流经序列链的信息流.LSTM 和 GRU 被广泛地应用到语音识别.语音合成和自然语言处理等. 1. RNN RNN 会受到短时记忆的影响.如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后面的时间步. 因此,如果你正在尝试处理一段文本进行预测,RNN 可能从一开始就会遗漏重要信息.在反向传播期间,RNN 会面临梯度消失的问题. 梯度是用于更新神经网络的权…
  RNN 循环神经网络,是非线性动态系统,将序列映射到序列,主要参数有五个:[Whv,Whh,Woh,bh,bo,h0][Whv,Whh,Woh,bh,bo,h0],典型的结构图如下: 和普通神经网络一样,RNN有输入层输出层和隐含层,不一样的是RNN在不同的时间t会有不同的状态,其中t-1时刻隐含层的输出会作用到t时刻的隐含层. 参数意义是: WhvWhv:输入层到隐含层的权重参数,WhhWhh:隐含层到隐含层的权重参数,WohWoh:隐含层到输出层的权重参数,bhbh:隐含层的偏移量,bo…
本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的. CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是position 1. 在RNN中输入数据格式: 对于最简单的RNN,我们可以使用两种方式来调用,torch.nn.RNNCell(),它只接受序列中的单步输入,必须显式的传入隐藏状态.torch.nn.RNN()可以接受一个序列的输入,默认会传入一个全0的隐藏状态,也可以自己申明隐藏状态传入. 输入大小…
循环神经网络 (Recurrent Neural Network,RNN) 是一类具有短期记忆能力的神经网络,因而常用于序列建模.本篇先总结 RNN 的基本概念,以及其训练中时常遇到梯度爆炸和梯度消失问题,再引出 RNN 的两个主流变种 -- LSTM 和 GRU. Vanilla RNN Vanilla RNN 的主体结构: 上图中 \(\bf{X, h, y}\) 都是向量,公式如下: \[ % <![CDATA[ \begin{align} \textbf{h}_{t} &= f_{\…
项目需要,先简记cell,有时间再写具体改进原因 RNN cell LSTM cell: GRU cell: reference: 1.https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45#50f0 2.https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf…
2019-08-29 17:17:15 问题描述:比较RNN,GRU,LSTM. 问题求解: 循环神经网络 RNN 传统的RNN是维护了一个隐变量 ht 用来保存序列信息,ht 基于 xt 和 ht-1 来计算 ht . ht = g( Wi xt + Ui ht-1 + bi ) yt = g( Wo ht + bo ) 门控循环神经网络 GRU 门控循环神经网络(Gated Recurrent Unit,GRU)中引入了门控机制. Update:Γu = g( Wu xt + Uu ht-1…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/239 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
目标         这个阶段会给cute-dl添加循环层,使之能够支持RNN--循环神经网络. 具体目标包括: 添加激活函数sigmoid, tanh. 添加GRU(Gate Recurrent Unit)实现. 添加LSTM(Long Short-term Memory)实现. 使用基于GRU和LSTM的RNN模型拟合一个正余弦叠加函数. RNN原理 原始的RNN         RNN模型用来捕捉序列数据的特征. 给定一个长度为T的输入系列\(X=(x_1, x_2, .., X_T)\)…