gym100825G. Tray Bien(轮廓线DP)】的更多相关文章

题意:3 * N的格子 有一些点是坏的 用1X1和1X2的砖铺有多少种方法 题解:重新学了下轮廓线 写的很舒服 #include <bits/stdc++.h> using namespace std; typedef long long ll; int n, m; ][]; ll dp[][ << ]; void dfs(int num, int i, int state, int nex) { ) { dp[i + ][nex] += dp[i][state]; return;…
补了一发轮廓线DP,发现完全没有必要从右往左设置状态,自然一点: 5 6 7 8 9 1 2 3 4 如此设置轮廓线标号,转移的时候直接把当前j位改成0或者1就行了.注意多记录些信息对简化代码是很有帮助的,尤其对于我这种代码经常错的一塌糊涂的人来说.. 呆马: POJ 3254 Corn Fields #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #…
跟上面那篇轮廓线dp是一样的,但是多了两个条件,一个是在原图上可能有些点是不能放的(即障碍),所以转移的时候要多一个判断color[i][j]是不是等于1什么的,另外一个是我们可以有多的1*1的骨牌,1*1的骨牌使用数量一定要在[c,d]之间,所以状态加多一维,转移的时候多一种情况(放1的).那么怎么初始化呢?有两种方法,一种是dp[0][0][d]=1,最后的答案的因为一定要用[c,d]之间,所以答案是dp[(t+1)&1][0][0~d-c].另外一种是dp[0][0][c~d]=1,最后答…
第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少不同的方法. 一个可行的解法就是轮廓线dp. 假设我们从上往下,从左往右去填,那么我们会发现,假如我们当前填的是(i,j)格的时候,在它前面的(i',j')其实是已经确定一定填了的,所以实际上没有填的时候处于轮廓线的部分,在这里没有具体 1 1 1 1 1 1 x x x x             如上…
其实这题还能用状压DP解决,可是时间达到2000ms只能过掉POJ2411.状压DP解法详见状压DP解POJ2411 贴上POJ2411AC代码 : 2000ms 时间复杂度h*w*(2^w)*(2^w) #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <utility> #include <string> #inc…
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq S}^{ }(-1)^{|T|-1}E(min(T))$ 那么只需要知道每个子集中最早得到的物品的期望时间即可得出答案. 对于每个子集,最早得到的物品的期望时间就是一次选择能得到这个子集中元素的概率的倒数. 用一次选择能得到这个子集中的元素的方案数除上总方案数(每次共有$2*n*m-n-m$种选择方…
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次任意覆盖相邻的两个,那么很明显就可以套\(min-max\)容斥. 要求的就是\(max(All)\),而每个集合的\(min\)是很好求的. 如果直接暴力枚举集合复杂度就是\(2^{cnt}cnt\). 仔细想想每个子集我们要知道的是什么,只需要知道子集大小来确定前面的容斥系数,还需要知道覆盖子集…
BZOJ 洛谷 \(Description\) 给定\(n,m,c\).\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过.棋盘的每个格子有三种状态. \(n\leq 100,m\leq 12,c\leq 6,Q\leq 5\). \(Solution\) 模板串只有\(2\)行,把它拆成两个串,考虑轮廓线DP. 对于\((i,j)\)这个格子,只需要考虑\((i-1,j)\)是否匹配了模式串的第一行,\((i,j)\)匹配到模式串第二行的哪. 所以令…
国际惯例的题面:这种题目显然DP了,看到M这么小显然要状压.然后就是具体怎么DP的问题.首先我们可以暴力状压上一行状态,然后逐行转移.复杂度n*3^m+3^(m*2),显然过不去. 考虑状态的特殊性,每个位置是黑子白子我们并不关心,我们只关心与模板的匹配情况.于是我们可以f(i,S,x,y)表示我们决策到i行j列,S表示上一行哪些位置和这一行哪些位置能与模板第一行完全匹配,x表示当前行与模板第一行匹配长度,y表示当前行与模板第二行匹配长度.转移的话就枚举当前行下一个位置填什么颜色棋子(或空着)即…
第一步先打一个表,就是利用轮廓线DP去打一个没有管有没有分界线组合数量的表 #include<bits/stdc++.h> using namespace std; ; <<; ][maxn + ]; ][]; int solve(int n, int m){ == ) ; memset(dp, , sizeof(dp)); dp[][] = ; , ed = ; ; i < n; i ++){ ; j < m; j ++){ swap(ing, ed); memset…