Tensorflow word2vec+manage experiments】的更多相关文章

Lecture note 5: word2vec + manage experiments Word2vec Most of you are probably already familiar with word embedding and understand the importance of a model like word2vec. For those who aren't, Stanford CS 224N's lecture on word vectors is a great r…
考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度计算                 关于线性和非线性的隐层 非线性隐层使得网络可以计算更加复杂的函数 线性隐层不能增强网络的表述能力,它们被用来做降维,减少训练需要的参数数目,这在nlp相关的模型中 经常用到(embedding vector)     一个back prop的例子        …
Word2vec 更完整版本(非demo)的代码在 tensorflow/models/embedding/     首先需要安装bazel 来进行编译 bazel可以下载最新的binary安装文件,这里下载0.1.0版本的bazel https://github.com/bazelbuild/bazel/releases/download/0.1.0/bazel-0.1.0-installer-linux-x86_64.sh 貌似需要root安装 sh bazel-0.1.0-installe…
maybe_download 下载text8.zip.可以手工下载下来.然后指定text8.zip的路径. read_data 解压text8.zip,把数据读入到data中. data是一个长数组,保存了所有单词.单词之间用空格分开.text8.zip解决后是一个文本文件,这个文本文件的内容非常简单只有字母组成的单词,单词之间用空格分开,没有别的字符. build_dataset 将出现次数最多的前50000个词和出现的次数放到数据结构count中.count是个dict,每个元素是个list…
内容来源:Keras 之父讲解 Keras:几行代码就能在分布式环境训练模型 把 Keras API 直接整合入 TensorFlow 项目中,这样能与你的已有工作流无缝结合.至此,Keras 成为了 TensorFlow 内部的一个新模块:tf.keras,它包含完整的 Keras API.用 Keras API 定义模型,用 TensorFlow estimator 和 experiments 在分布式环境训练模型. 我们有一组 10 秒短视频组成的数据集,视频内容是人从事各种活动.一个深度…
转自:https://github.com/andrewt3000/DL4NLP Deep Learning for NLP resources State of the art resources for NLP sequence modeling tasks such as machine translation, image captioning, and dialog. My notes on neural networks, rnn, lstm Deep Learning for NL…
无监督学习 前面已经说过了无监督学习的概念.无监督学习在实际的工作中应用还是比较多见的. 从典型的应用上说,监督学习比较多用在"分类"上,利用给定的数据,做出一个决策,这个决策在有限的给定可能性中选择其中一种.各类识别.自动驾驶等都属于这一类. 无监督学习则是"聚类",算法自行寻找输入数据集的规律,并把它们按照规律分别组合,同样特征的放到一个类群.像自然语言理解.推荐算法.数据画像等,都属于这类(实际实现中还是比较多用半监督学习,但最早概念的导入还是属于无监督学习)…
PlayGround.http://playground.tensorflow.org .教学目的简单神经网络在线演示.实验图形化平台.可视化神经网络训练过程.在浏览器训练神经网络.界面,数据(DATA).特征(FEATURES).神经网络隐藏层(HIDDEN LAYERS).层中连接线.输出(OUTPUT). 数据.二维平面,蓝色正值,黄色负值.数据形态,圆形.异或.高斯.螺旋.数据配置,调整噪声(noise)大小,改变训练.测试数据比例(ratio),调整入输入每批(batch)数据数量1-…
opts = Options() with tf.Graph().as_default(), tf.Session() as session: model = Word2Vec(opts, session) if FLAGS.interactive: #print('load model from file %s %s', opts.save_path, os.path.join(opts.save_path, "/model.ckpt")) #model.saver.restore(…
简单demo的代码路径在tensorflow\tensorflow\g3doc\tutorials\word2vec\word2vec_basic.py Sikp gram方式的model思路 http://tensorflow.org/tutorials/word2vec/index.md 另外可以参考cs224d课程的课件.     窗口设置为左右1个词 对应skip gram模型 就是一个单词预测其周围单词(cbow模型是 输入一系列context词,预测一个中心词)     Quick…