AP聚类】的更多相关文章

AP聚类算法是基于数据点间的"信息传递"的一种聚类算法.与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数.AP算法寻找的"examplars"即聚类中心点是数据集合中实际存在的点,作为每类的代表. 算法描述: 假设$\{ {x_1},{x_2}, \cdots ,{x_n}\} $数据样本集,数据间没有内在结构的假设.令是一个刻画点之间相似度的矩阵,使得$s(i,j) > s(i,k)$当且仅当$x_i$与$x_j$的相似性程度要大…
Affinity Propagation (AP) 聚类是2007年在Science杂志上提出的一种新的聚类算法.它根据N个数据点之间的相似度进行聚类,这些相似度可以是对称的,即两个数据点互相之间的相似度一样(如欧氏距离);也可以是不对称的,即两个数据点互相之间的相似度不等.这些相似度组成N×N的相似度矩阵S(其中N为有N个数据点). AP算法不需要事先指定聚类数目,相反它将所有的数据点都作为潜在的聚类中心,称之为exemplar.以S矩阵的对角线上的数值s (k, k)作为k点能否成为聚类中心…
基于代表点的聚类算法可以说是聚类算法中"最经典的,最流行的,也是最前沿的". "最经典"是因为K均值是最早出现的聚类算法之一; "最流行"是因为K均值和K中心自提出来,不仅在学术界得到了深入的研究,还在工业界得到了广泛的应用;" 最前沿"是因为自2000年来,在Science上先后发表了两种聚类算法,无论是Frey和Duceck于2007年提出的AP(AffinityPropagation)聚类算法,还是Rodriguez和…
一.算法简介 Affinity Propagation聚类算法简称AP,是一个在07年发表在Science上的聚类算法.它实际属于message-passing algorithms的一种.算法的基本思想将数据看成网络中的节点,通过在数据点之间传递消息,分别是吸引度(responsibility)和归属度(availability),不断修改聚类中心的数量与位置,直到整个数据集相似度达到最大,同时产生高聚类中心,并将其余各点分配到相应的聚类中. 二.算法描述 1.相关概念 Exemplar:指的…
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类中心. 2.相关概念(假如有数据点i和数据点j)        (图1)              …
scikit-learn点滴 scikit-learn是非常漂亮的一个机器学习库,在某些时候,使用这些库能够大量的节省你的时间,至少,我们用Python,应该是很难写出速度快如斯的代码的. scikit-learn官方出了一些文档,但是个人觉得,它的文档很多东西都没有讲清楚,它说算法原理的时候,只是描述一下,除非你对这种算法已经烂熟于心,才会对它的描述会心一笑,它描述API的时候,很多时候只是讲了一些常见用法,一些比较高级的用法就语焉不详,虽然有很多人说,这玩意的文档写得不错,但是我觉得特坑.所…
关于局部敏感哈希算法.之前用R语言实现过,可是由于在R中效能太低.于是放弃用LSH来做类似性检索.学了python发现非常多模块都能实现,并且通过随机投影森林让查询数据更快.觉得能够试试大规模应用在数据类似性检索+去重的场景. 私觉得,文本的类似性能够分为两类:一类是机械类似性:一类是语义类似性. 机械类似性代表着,两个文本内容上的相关程度.比方"你好吗"和"你好"的类似性.纯粹代表着内容上字符是否全然共现,应用场景在:文章去重: 语义类似性代表着,两个文本语义上的…
有一些奇奇怪怪的数据集 波士顿房价数据集 使用sklearn.datasers.load_boston 加载相关的数据集 重要参数 return_X_y 表示是否返回target (价格) 默认为False print(data.shape) 同时返回data和target 鸢尾花数据集 类别分为三类 Iris Setosa,Iris Versicolour Iris Virginica 该数据集和以用于测试多分类器 加载鸢尾花数据集 sklearn.datasets.load_iris 重要参…
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类中心. 2.相关概念(假如有数据点i和数据点j)        (图1)              …
1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都当作潜在的聚类中心(称之为exemplar),然后数据点两两之间连线构成一个网络(相似度矩阵),再通过网络中各条边的消息(responsibility和availability)传递计算出各样本的聚类中心. 2.相关概念(假如有数据点i和数据点j)        (图1)              …