An Analysis of Scale Invariance in Object Detection – SNIP 简介 小目标问题一直是目标检测领域一个比较难解决的问题,因为小目标提供的信息比较少,当前的很多目标检测框架并不能充分捕捉小目标的全部信息,这导致了小目标检测的MAP比较低,在COCO数据集中,小目标所占的尺度也非常的小,尺度差距非常之大(scale variance),SNIP这篇文章很好的缓解了scale variance所带来的问题. 文章主要是围绕几个实验展开的,通过这几个…
  简介:武大遥感国重实验室-夏桂松和华科电信学院-白翔等合作做的一个航拍图像数据集 摘要: 目标检测是计算机视觉领域一个重要且有挑战性的问题.虽然过去的十几年中目标检测在自然场景已经有了较重要的成就,但在遥感图像上却进展缓慢,原因不仅仅体现在图像规模的庞大及多样性.物体定位问题和地球表面物体实例的形状检测上,还因为遥感场景中具有良好注释的数据集过于匮乏.为了推进在Earth Vision,又称Earth Observation and Remote Sensing上的目标检测的研究,我们引进在…
前言 本来想按照惯例来一个overview的,结果看到1篇十分不错而且详细的介绍,因此copy过来,自己在前面大体总结一下论文,细节不做赘述,引用文章讲得很详细,另外这篇paper引用十分详细,如果做detection可以从这篇文章去读更多不同类型的文章. 论文概述   卷积网络具有较好的平移不变性,但是对尺度不变性有较差的泛化能力,现在网络具有的一定尺度不变性.平移不变性往往是通过网络很大的capacity来"死记硬背",小目标物体难有效的检测出来,主要原因有:1.物体尺度变化很大,…
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Goo…
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程,分割的文章次之,而定位的文章就少之又少了.这其中的缘由也很简单:识别目前来说已经不是什么难事了,所以容易写,但分割和定位却仍然是一个头疼不已的问题,不同场景方法不同,甚至同一场景也要结合多种图像处理方法,因此很难有通用的解决策略.在深度学习火起来之后,很多研究人员开始尝试用深度学习的特征提取能力来…
论文源址:https://arxiv.org/abs/1605.06409 开源代码:https://github.com/PureDiors/pytorch_RFCN 摘要 提出了基于区域的全卷积网络,用于精确高效的目标检测,相比于基于区域的检测器(Fast/Faster R-CNN),这些检测器重复的在子区域进行数百次计算,而本文在整张图像上进行共享计算.因此,本文提出了基于位置敏感分数图用于解决图像分类中的平移不变性及目标检测中的平移可变性之间的矛盾.将图像分类网络处理为全卷积网络用于目标…
Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一个问题,就是nms算法根据类别置信度为准则去删掉与他iou大于一定阈值的算法是否合理?事实是,分类置信度没法评估回归框是否回归的准确,这就造成了一种情况,分类置信度高的不一定回归的准,那么回归的准的又因为与之iou更高而被剔除了.为什么回归的准的反而类别置信度可能不高,而类别置信度高的可能回归的不准…
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf 代码地址:https://github.com/unsky/FPN 概述 FPN是FAIR发表在CVPR 2017上的一篇文章,采用特征金字塔的方法进行目标检测.文中利用深层卷积网络固有的多尺度金字塔层次结构,高效地构造特征金字塔.文章提出了FPN——一种具有横向连接的自顶向下的结构,来构建所有尺度上的高级语义特征映射. 网络结构 下图展示了几种不同的利用特征的方式:(a)为图像金字塔,就是对图像resize…
题记:最近在做LLL(Life Long Learning),接触到了SSL(Semi-Supervised Learning)正好读到了谷歌今年的论文,也是比较有点开创性的,浅显易懂,对比实验丰富,非常适合缺乏基础科学常识和刚刚读研不会写论文的同学读一读,触类旁通嘛. 这篇论文思路等等也非常适合刚刚开始做学术时候写文论参考使用,你看,它有创造性(半监督学习用在了目标检测上),理论基础扎实(体现在专业词汇丰富,也介绍了其他相关论文,做个小综述论文都够了),工作量够够的(大量的对比试验),实验效果…
结构推理网络:基于场景级与实例级目标检测 原文链接:https://arxiv.org/abs/1807.00119 代码链接:https://github.com/choasup/SIN Yong Liu, Ruiping Wang, Shiguang Shan, Xilin Chen. Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships. pu…