MobileNet系列】的更多相关文章

最近一段时间,重新研读了谷歌的mobilenet系列,对该系列有新的认识. 1.MobileNet V1 这篇论文是谷歌在2017年提出了,专注于移动端或者嵌入式设备中的轻量级CNN网络.该论文最大的创新点是,提出了深度可分离卷积(depthwise separable convolution). 首先,我们分析一下传统卷积的运算过程,请参考第一个动图或者这篇博客.可以看出,传统卷积分成两步,每个卷积核与每张特征图进行按位相成然后进行相加,此时,计算量为$D_F*D_F*D_K*D_K*M*N$…
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和MobileNet论文,捋一遍MobileNet,基本代码和图片都是来自网络,这里表示感谢,参考链接均在后文.下面开始. MobileNet论文写的很好,有想法的可以去看一下,我这里提供翻译地址: 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Ne…
​ MobileNet系列之MobileNet_v1 Inception系列之Inception_v1 Inception系列之Batch Normalization Inception系列之Inception_v2-v3 Inception系列之Inception_v4 导言: MobileNet_v2提出了一些MobileNet_v1存在的一些问题,并在此基础上提出了改进方案.其主要贡献为提出了线性瓶颈(Linear Bottlenecks)和倒残差(Inverted Residuals).…
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 CNN 网络,如 VGG.GoogLeNet.ResNet.DenseNet 等.由于神经网络的性质,为了获得更好的性能,网络层数不断增加,从 7 层 AlexNet 到 16 层 VGG,再从 16 层 VGG 到 GoogLeNet 的 22 层,再到 152 层 ResNet,更有上千层的 R…
MobileNet MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNetV2: Inverted Residuals and Linear Bottlenecks 背景 自从AlexNet在2012年赢得ImageNet大赛的冠军一来,卷积神经网络就在计算机视觉领域变得越来越流行,一个主要趋势就是为了提高准确率就要做更深和更复杂的网络模型,然而这样的模型在规模和速度…
MobileNet系列很重要的轻量级网络家族,出自谷歌,MobileNetV1使用深度可分离卷积来构建轻量级网络,MobileNetV2提出创新的inverted residual with linear bottleneck单元,虽然层数变多了,但是整体网络准确率和速度都有提升,MobileNetV3则结合AutoML技术以及人工微调进行更轻量级的网络构建   来源:晓飞的算法工程笔记 公众号 MobileNetV1 论文: MobileNets: Efficient Convolutiona…
论文标题:Searching for MobileNetV3 论文作者:Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam 论文地址:https://arxiv.org/abs/1905.02244.pdf 参考的 MobileN…
导言:    自2012年AlexNet在ImageNet比赛上获得冠军,卷积神经网络逐渐取代传统算法成为了处理计算机视觉任务的核心.    在这几年,研究人员从提升特征提取能力,改进回传梯度更新效果,缩短训练时间,可视化内部结构,减少网络参数量,模型轻量化, 自动设计网络结构等这些方面,对卷积神经网络的结构有了较大的改进,逐渐研究出了AlexNet.ZFNet.VGG.NIN.GoogLeNet和Inception系列.ResNet.WRN和DenseNet等一系列经典模型,MobileNet…
旷视MegEngine核心技术升级 7 月 11 日,旷视研究院在 2020 WAIC · 开发者日「深度学习框架与技术生态论坛」上围绕 6 月底发布的天元深度学习框架(MegEngine)Beta 版本核心技术升级与开源生态建设进行了首次深度解读. 7 月 11 日,旷视研究院在 2020 WAIC · 开发者日「深度学习框架与技术生态论坛」上围绕 6 月底发布的天元深度学习框架(MegEngine)Beta 版本核心技术升级与开源生态建设进行了首次深度解读. 作为一款训练推理一体化.动静合一…
前言  本文汇总了过去本公众号原创的.国外博客翻译的.从其它公众号转载的.从知乎转载的等一些比较重要的文章,并按照论文分享.技术总结三个方面进行了一个简单分类.点击每篇文章标题可阅读详细内容 欢迎关注公众号 CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 今年是进入计算机视觉领域的第四年,做公众号的第一年,写了不少原创文章,从国外博客上翻译了不少我认为比较不错的文章,也从知乎上找了不少不错的文章在经作者授权后转载到公众号. 整体上来说,这一年基本保持初心,始终在做一…