2.1.1 题目与摘要 1.为什么要增强IPD? The phase differences between the discrete Fourier transform (DFT) coefficients for two microphone signals are one of popular spatial cues in the frequency domain. 非理想情况下,IPD会失真,会偏离纯净语音提取的IPD. 2.IPD在复杂场景(混响.噪声)下受到了什么影响? 我们可以从…
2.2.1 标题(2019年9月5日) 估计时间差的广义互相关方法 互相关可以表示两个信号的相似程度. 计算:两个信号循环移位相乘再相加,得到的一组互相关值. 相关函数: 何为广义?通用的框架,可以设计多种实现细节? 2.2.2 摘要 最大似然(ML)估计器被用来计算在不相关噪声存在情况下,空间分离的两个传感器接收到的信号之间时间差. 假设:噪声是不相关的,噪声与目标声源信号不相关,噪声与噪声之间也不相关. 这个ML估计器可以由一对接收器预滤波器后跟一个互相关来实现. 后面由公式可知,互相关函数…
基于子阵列互累积量(Cross-Cumulant)的远场和近场混合声源定位[1]. 文中采用Uniform linear array (ULA)阵列,将其分为两个互相重叠的子阵列,构建关于子阵列输出信号的两个特殊cross-cumulant matrices,而这两个矩阵仅仅与源信号的DOA有关. 信号模型 阵列模型如下: K个窄带信号,阵元数目为2M+1的对称ULA阵列.假设中间阵元为相位基准.则第m个传感器的接收信号可以表示为: 其中为第k个入射信号的波形,为第m个传感器的噪声,为第k个源信…
目前基于麦克风阵列的声源定位方法大致可以分为三类:基于最大输出功率的可控波束形成技术.基于高分辨率谱图估计技术和基于声音时间差(time-delay estimation,TDE)的声源定位技术. 基于TDE的算法核心在于对传播时延的准确估计,一般通过对麦克风间信号做互相关处理得到.进一步获得声源位置信息,可以通过简单的延时求和.几何计算或是直接利用互相关结果进行可控功率响应搜索等方法.这类算法实现相对简单,运算量小,便于实时处理,因此在实际中运用最广. GCC-PHAT 基于广义互相关函数的时…
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关系方面具有优势.本文将DNNs应用于浅水环境下的源定位.提出了两种方法,通过不同的神经网络结构来估计宽带源的范围和深度.第一阶段采用经典的两阶段方案,特征提取和DNN分析是两个独立的步骤;与模态信号空间相关联的特征向量被提取为输入特征.然后,利用时滞神经网络对长期特征表示进行建模,构建回归模型;第二…
这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI由大到小的顺序更新 得到ks值后,载计算一下节点邻居ks值和度值d的比值 (2)当出现次数最多的标签不止一个时,再计算一下标签重要度LI(label importance) 其实就是找到节点相同标签的那些令居计算一个合值,看着也不难啊 (3)最后这个算法使用的是异步传播 下面是我实现的代码 func…
论文假设和单目标模型 这部分想讲一下Semantic Localization Via the Matrix Permanent这篇文章的一些假设. 待求解的问题可以描述为 假设从姿态\(x\)看到的物体(路标点)集合为\(Y(x)={y_1,...,y_n}\),观测为\(Z={z_1,...,z_m}\).求后验概率\(p(Z|Y,x)\). 这里引入数据关联\(\pi\)表示从物体到测量的一个对应关系,其中即包含正确的配对,也包含错误的配对和缺失的配对. 一些假设 作者对目标检测和数据关联…
虽然国内必须FQ才能登录YouTube,但想必大家都知道这个网站.基本上算是世界范围内视频领域的最大的网站了,坐拥10亿量级的用户,网站内的视频推荐自然是一个非常重要的功能.本文就focus在YouTube视频推荐的DNN算法,文中不但详细介绍了Youtube推荐算法和架构细节,还给了不少practical lessons and insights,很值得精读一番.下图便是YouTube APP视频推荐的一个例子. 在推荐系统领域,特别是YouTube的所在视频推荐领域,主要面临三个挑战: 规模…
Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutorials Researchers WebSites Datasets Frameworks Miscellaneous Contributing Free Online Books Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Cou…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…