转载至: https://blog.csdn.net/tangwei2014/article/details/46788025 下面是内容: [前言] 最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等.learning to rank中其中重要的一个步骤就是找到一个好的similarity function,而triplet loss是用的非常广泛的一种. […
人脸识别中Softmax-based Loss的演化史  旷视科技 近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上:在本文中,旷视研究院(上海)(MEGVII Research Shanghai)从两种主要的改进方式——做归一化以及增加类间 margin——展开梳理,介绍了近年来基于 Softmax 的 Loss 的研究进展. 引言 Softmax简介 归一化(Normalization) Weight Normalization Feature Normal…
浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u012505617/article/details/89355690 在人脸识别中,算法的提高主要体现在损失函数的设计上,损失函数会对整个网络的优化有着导向性的作用.我们看到许多常用的损失…
安装人脸识别开源库(face_recognition) pip3 install face_recognition 注意:pip3 尝试编译 dlib 依赖时很可能会报错,参考:https://www.learnopencv.com/install-dlib-on-ubuntu/  安装dlib库. git clone https://github.com/davisking/dlib.git cd dlib apt-get update apt-get install build-essent…
搞了一年人脸识别,寻思着记录点什么,于是想写这么个系列,介绍人脸识别的四大块:Face detection, alignment, verification and identification(recognization),本别代表从一张图中识别出人脸位置,把人脸上的特征点定位,人脸校验和人脸识别.(后两者的区别在于,人脸校验是要给你两张脸问你是不是同一个人,人脸识别是给你一张脸和一个库问你这张脸是库里的谁. 今天先介绍第一部分和第二部分. 主要说三篇顶会文章. ===============…
http://blog.jobbole.com/85783/     首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - JavaScript - HTML5 - CSS 后端 - Python - Java - C/C++ - PHP - .NET - Ruby - Go 移动端 - Android - iOS 数据库 运维 - Linux - UNIX 其他技术 - Git - 机器学习 - 算法 - 测试 - 信息安…
DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,目前最强人脸识别算法,已经三代. 如今,深度学习方兴未艾,大数据风起云涌,各个领域都在处于使用深度学习进行强突破的阶段,人脸识别也不例外,香港中文大学的团队使用卷积神经网络学习特征,将之用于人脸识别的子领域人脸验证方面,取得了不错的效果.虽然是今年7月份才出的成果,但连发三箭,皆中靶心,使用的卷积神经网络已经改进了三次,破竹之…
一.人脸验证问题(face verification)与人脸识别问题(face recognition) 1.人脸验证问题(face verification):           输入                       数据库 Image                     Image ID                            ID 通过输入的ID找到数据库里的Image,然后将Image与输入的Image比较,判断图片是不是同一个人.一对一问题,通过监督学习…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
最近准备系统地学习一下深度学习和TensorFlow,就以人脸识别作为目的. 十年前我做过一些图像处理相关的项目和研究,涉及到图像检索.记得当时使用的是SIFT特征提取,该特征算子能很好地抵抗图像旋转.仿射变换等变化.可以说SIFT是图像特征工程方面做得很出色的算子. 现如今深度学习特别是CNN,ResNet等模型被研究者发明之后,图像特征工程似乎已经很"没有必要"了.深度神经网络通过多层表示能够更抽象地表示图像的特征(称作embedding). 在人脸识别也得益于深度学习,其中fac…