Pytorch中的squeeze()和unsqueeze()函数】的更多相关文章

在numpy库中,经常会出现“秩为1的一维数组”(come from 吴恩达的深度学习,目前还没有搞清楚numpy中如此设计的意图).比如: 注意这里的a的shape是[3] ,既不是 [1,3] 也不是 [3,1].这就说明它既不是行向量也不是列向量,只是一个数组. 但是我们可以用squeeze()和unsqueeze()对其进行操作,比如: 在对这两个函数讲解之前,我们先统一一下定义: In : x.shape Out: torch.Size( [ a , b , c ] ) 这里我们说a是…
一.unsqueeze()函数 1. 首先初始化一个a 可以看出a的维度为(2,3) 2. 在第二维增加一个维度,使其维度变为(2,1,3) 可以看出a的维度已经变为(2,1,3)了,同样如果需要在倒数第二个维度上增加一个维度,那么使用b.unsqueeze(-2) 二.squeeze()函数介绍 1. 首先得到一个维度为(1,2,3)的tensor(张量) 由图中可以看出c的维度为(1,2,3) 2.下面使用squeeze()函数将第一维去掉 可见,维度已经变为(2,3) 3.另外 可以看出维…
squeeze用来减少维度, unsqueeze用来增加维度 具体可见下方博客. pytorch中squeeze和unsqueeze…
1.squeeze() 函数 squeeze() 用来去掉向量的一个维度,只有维度为 1 的那一维才能去掉 example: 初始化1个向量shape为(1,2,3)的向量 import torch a = torch.rand((1,2,3)) 去掉第 0 维,第 0 维的大小是1,所以可以去掉第0维,去掉后向量的 shape 是(2,3) 去掉最后一维,最后一维的大小是3,所以不会操作成功,向量的 shape 仍然是(1,2,3) 2.unsqueeze()函数 从函数名字就可以看出,uns…
import torch torch中的squeeze与unsqueeze作用是去除/添加维度为1的行 例如,a=torch.randn(2,3) 那么b=a.unsqueeze(0),b为(1,2,3)的矩阵 类似的,b=a.unsqueeze(1),b为(2,1,3)的矩阵 b=a.unsqueeze(2),b为(2,3,1)的矩阵 同理,如果a=torch.randn(2,1,3) 则b=a.squeeze(2)=torch.squeeze(a),b为(2,3)的矩阵.…
1. unsqueeze() 该函数用来增加某个维度.在PyTorch中维度是从0开始的. import torch a = torch.arange(0, 9) print(a) 结果: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8]) 利用view()改变tensor的形状.值得注意的是view不会修改自身的数据,返回的新tensor与源tensor共享内存:同时必须保证前后元素总数一致. a = a.view(3, 3) print(f"a:{a} \n shape:…
官方文档 torch.matmul() 函数几乎可以用于所有矩阵/向量相乘的情况,其乘法规则视参与乘法的两个张量的维度而定. 关于 PyTorch 中的其他乘法函数可以看这篇博文,有助于下面各种乘法的理解. torch.matmul() 将两个张量相乘划分成了五种情形:一维 × 一维.二维 × 二维.一维 × 二维.二维 × 一维.涉及到三维及三维以上维度的张量的乘法. 以下是五种情形的详细解释: 如果两个张量都是一维的,即 torch.Size([n]) ,此时返回两个向量的点积.作用与 to…
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交叉熵,脑子里就会出现这个东西: 随后我们脑子里可能还会出现Sigmoid()这个函数: pytorch中的CrossEntropyLoss()函数实际就是先把输出结果进行sigmoid,随后再放到传统的交叉熵函数中,就会得到结果. 那我们就先从sigmoid开始说起,我们知道sigmoid的作用其实…
温馨提示:为了更好的教程体验,提供视频.阅读地址 Youtube: https://www.youtube.com/playlist?list=PLgAyVnrNJ96CqYdjZ8v9YjQvCBcK5PZ-V BiliBili: https://www.bilibili.com/video/av74281036/ Github: https://github.com/xiaotudui/PyTorch-Tutorial 相关下载:https://pan.baidu.com/s/16koDDD…
Pytorch中randn和rand函数的用法 randn torch.randn(*sizes, out=None) → Tensor 返回一个包含了从标准正态分布中抽取的一组随机数的张量 size:张量的形状, out:结果张量.(目前还没有看到使用这个参数的例子) rand也差不多其实: torch.rand(*sizes, out=None) → Tensor 但是它是[0,1)之间的均匀分布 其他一些分布 离散正态分布 torch.normal(means, std, out=None…