本节内容 ------------------ · Spark为什么要分区 · Spark分区原则及方法 · Spark分区案例 · 参考资料 ------------------ 一.Spark为什么要分区    分区概念:分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 为什么要分区,这个借用…
----本节内容------- 1.遗留问题答疑 1.1 典型问题解答 1.2 知识点回顾 2.Spark编程基础 2.1 Spark开发四部曲 2.2 RDD典型实例 2.3 非RDD典型实例 3.问题解答 4.参考资料 --------------------- 每一次答疑阶段,我都会站在老师的角度去思考一下,如果是我,我应该怎么回答,每每如此,不禁吓出一身冷汗.有些问题看答案确实挺容易的,但当自己作为一个答疑者去思考,可能不一样,因为快速确认一个答案的同时,你得否认很多的东西,脑海里闪过很…
----本节内容------- 1.大数据基础 1.1大数据平台基本框架 1.2学习大数据的基础 1.3学习Spark的Hadoop基础 2.Hadoop生态基本介绍 2.1Hadoop生态组件介绍 2.2Hadoop计算框架介绍 3.Spark概述 3.1 Spark出现的技术背景 3.2 Spark核心概念介绍 4.Spark运行模式 4.1.Spark程序组成 4.2.Spark运行模式 5.参考资料 --------------------- 1.大数据基础 1.1 大数据平台基本框架…
----本节内容------- 1.遗留问题解答 2.Spark调优初体验 2.1 利用WebUI分析程序瓶颈 2.2 设置合适的资源 2.3 调整任务的并发度 2.4 修改存储格式 3.Spark调优经验 3.1 Spark原理及调优工具 3.2 运行环境优化 3.2.1 防止不必要的分发 3.2.2 提高数据本地性 3.2.3 存储格式选择 3.2.4 选择高配机器 3.3 优化操作符 3.3.1 过滤操作导致多小任务 3.3.2 降低单条记录开销 3.3.3 处理数据倾斜或者任务倾斜 3.…
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark on Yarn运行流程 2.5 WordCount执行原理 3.Spark计算引擎原理 3.1 Spark内部原理 3.2 生成逻辑执行图 3.3 生成物理执行图 4.Spark Shuffle解析 4.1 Shuffle 简史 4.2  Spark Shuffle ·Shuffle Write…
----本节内容------- 1.Spark背景介绍 2.Spark是什么 3.Spark有什么 4.Spark部署 4.1.Spark部署的2方面 4.2.Spark编译 4.3.Spark Standalone部署 4.4.Standalone HA配置 4.5.伪分布式部署 5.Spark任务提交 5.1.Spark-shell 5.2.Spark-submit 6.参考资料 --------------------- 1.Spark背景介绍 Spark是AMLab实验室贡献出的代码,是…
经过一段时间的学习和测试,是时候给spark的学习经历做一个总结了,对于spark的了解相对晚了写.春节期间(预计是无大事),本博准备推出20篇左右spark系列原创文章(先把牛吹出去再说) ,尽量将枯燥无味的技术讲的通俗易懂- r.kelly 2013年的时候第一次听说spark这么个神器,那时候它还幼小,没什么人鸟它,但是它强大基因注定了它不是个凡夫俗子, 故事就是从那一小撮人群中开始的. 一.Spark何许人也 姓名:Spark 性别:未知 出生地:加州大学伯克利分校AMP实验室 出生年月…
spark SQL初步认识 spark SQL是spark的一个模块,主要用于进行结构化数据的处理.它提供的最核心的编程抽象就是DataFrame. DataFrame:它可以根据很多源进行构建,包括:结构化的数据文件,hive中的表,外部的关系型数据库,以及RDD 创建DataFrame 数据文件students.json {"id":1, "name":"leo", "age":18} {"id":2,…
RDD真的是一个很晦涩的词汇,他就是伯克利大学的博士们在论文中提出的一个概念,很抽象,很难懂:但是这是spark的核心概念,因此有必要spark rdd的知识点,用最简单.浅显易懂的词汇描述.不想用学术话的语言来阐述RDD是什么,用简单.容易理解的方式来描述. 一.什么是RDD,RDD出现的背景 Mapreduce计算模型的出现解决了分布式计算的诸多难题,但是由于MR对数据共享的解决方案比较低效,导致MR编程模型效率不高,将数据写到一个稳定的外部存储系统,如HDFS,这个会引起数据复写.磁盘IO…
----本节内容------- 1.Kafka基础概念 1.1 出世背景 1.2 基本原理 1.2.1.前置知识 1.2.2.架构和原理 1.2.3.基本概念 1.2.4.kafka特点 2.Kafka初体验 2.1 环境准备 2.2 Kafka小试牛刀 2.2.1单个broker初体验 2.2.2 多个broker初体验 2.3 Kafka分布式集群构建 2.3.1 Kafka分布式集群构建 2.3.2 Kafka主题创建 2.3.3 生产者生产数据 2.3.4消费者消费数据 2.3.5消息的…
  Spark 基本函数学习笔记一¶ spark的函数主要分两类,Transformations和Actions. Transformations为一些数据转换类函数,actions为一些行动类函数: 转换:转换的返回值是一个新的RDD集合,而不是单个值.调用一个变换方法, 不会有任何求值计算,它只获取一个RDD作为参数,然后返回一个新的RDD. 行动:行动操作计算并返回一个新的值.当在一个RDD对象上调用行动函数时, 会在这一时刻计算全部的数据处理查询并返回结果值. 这里介绍pyspark中常…
Spark基础学习精髓 1 Spark与大数据 1.1 大数据基础 1.1.1 大数据特点 存储空间大 数据量大 计算量大 1.1.2 大数据开发通用步骤及其对应的技术 大数据采集->大数据预处理->大数据存储->大数据处理->大数据可视化 (1)大数据采集技术 分布式架构.多种采集技术混合使用 web数据采集:shell编程.爬虫工具.爬虫程序开发.HTTP协议.TCP/IP基本原理及Socket程序接口.编程语言.数据格式转换.分布式存储的命令和接口(HDFS.HBase等).…
Phoenix表和索引分区,基本优化方法 优化方法 1. SALT_BUCKETS RowKey SALT_BUCKETS 分区 2. Pre-split RowKey分区 3. 分列族 4. 使用压缩 5. 二级索引 6.参数优化 优化方法 原文地址:Phoenix基本优化方法 1. SALT_BUCKETS HBASE建表之初默认一个region,当写入数据超过region分裂阈值时才会触发region分裂.我们可以通过SALT_BUCKETS方法加盐,在表构建之初就对表进行预分区.SALT…
一.分区原理 1.为什么要分区?(这个借用别人的一段话来阐述.) 为了减少网络传输,需要增加cpu计算负载.数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduce框架的性能开支主要在io和网络传输,io因为要大量读写文件,它是不可避免的,但是网络传输是可以避免的,把大文件压缩变小文件, 从而减少网络传输,但是增加了cpu的计算负载. Spark里面io也是不可避免的,但是网络传输spark里面进行了优化.spark把rdd进行分区(分片),放在集群上并行计…
spark入门教程(3)--Spark 核心API开发 原创 2016年04月13日 20:52:28 标签: spark / 分布式 / 大数据 / 教程 / 应用 4999 本教程源于2016年3月出版书籍<Spark原理.机制及应用> ,在此以知识共享为初衷公开部分内容,如有兴趣,请支持正版书籍. Spark综合了前人分布式数据处理架构和语言的优缺点,使用简洁.一致的函数式语言Scala作为主要开发语言,同时为了方便更多语言背景的人使用,还支持Java.Python和R语言.Spark因…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
本节内容 · spark底层执行机制 · 细说RDD构建过程 · Job Stage的划分算法 · Task最佳计算位置算法 一.spark底层执行机制 对于Spark底层的运行原理,找到了一副很好的图,先贴上 客户端提交应用后,spark是如何执行的要有一个整体的概念,做到心中有数,先整体把握,才能更好的分模块开垦细节,废话不多说,先来看该图如何更好的理解. 1)提交前的联系 Worker向Master或则ResourceManager汇报自己有哪些资源(内存.CPU.磁盘空间.网络等),Ma…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
----本节内容-------1.概览        1.1 Spark SQL        1.2 DatSets和DataFrame2.动手干活        2.1 契入点:SparkSession        2.2 创建DataFrames        2.3 非强类型结果集操作        2.4 程序化执行SQL查询        2.5 全局临时视图        2.6 创建DataSets        2.7 与RDD交互操作        2.8 聚集函数3.Sp…
----本节内容------- 1.流式处理系统背景 1.1 技术背景 1.2 Spark技术很火 2.流式处理技术介绍 2.1流式处理技术概念 2.2流式处理应用场景 2.3流式处理系统分类 3.流式处理技术关键技术 3.1流式处理系统管道构建 3.2流式处理系统关键技术 3.3用户行为分析系统介绍 4.问题答疑 5.参考资料 --------------------- 1.流式处理技术 1.1 技术背景 业务驱动技术发展,脱了了业务的技术,最多就是一个研究性的东西,流式处理技术的火爆源于业内…
spark是个啥? Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发. Spark和Hadoop有什么不同呢? Spark是基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.   Spark的适用场景 Spark是基于内存的迭代计算框架,适用于需…
08.Spark常用RDD变换 8.1 概述 Spark RDD内部提供了很多变换操作,可以使用对数据的各种处理.同时,针对KV类型的操作,对应的方法封装在PairRDDFunctions trait中,KV类的RDD可以被隐式转换成PairRDDFunctions类型.其中很多的操作,和传统的SQL语句中的操作是对应的,只是底层换成Spark的MR计算. 8.2 常用变换 操作 解释 map 变换,将输入的每个元素进行响应操作,生成新的元素 flatMap 压扁,取出具有可迭代性质的组件中每个…
一.学习Spark RDD RDD是Spark中的核心数据模型,一个RDD代表着一个被分区(partition)的只读数据集. RDD的生成只有两种途径: 一种是来自于内存集合或外部存储系统: 另一种是通过转换操作来自于其他RDD: 一般需要了解RDD的以下五个接口: partition分区,一个RDD会有一个或者多个分区 dependencies()RDD的依赖关系 preferredLocations(p)对于每个分区而言,返回数据本地化计算的节点 compute(p,context)对于分…
本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 <详细讲解redis数据结构(内存模型)以及常用命令> <redis高级应用(主从.事务与锁.持久化)> 本文我们继续学习redis的高级特性——集群.本文主要内容包括集群搭建.集群分区原理和集群操作的学习. Redis集群简介 Redis 集群是3.0之后才引入的,在3.0之前,使用哨兵(sentinel)机制(本文将不做介绍,大家可另行查阅)来监控各个节点之间的状态.Redi…
本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 <详细讲解redis数据结构(内存模型)以及常用命令> <redis高级应用(主从.事务与锁.持久化)> 本文我们继续学习redis的高级特性——集群.本文主要内容包括集群搭建.集群分区原理和集群操作的学习. Redis集群简介 Redis 集群是3.0之后才引入的,在3.0之前,使用哨兵(sentinel)机制(本文将不做介绍,大家可另行查阅)来监控各个节点之间的状态.Redi…
Spark菜鸟学习营Day6 分布式代码运行调试 作为代码调试,一般会分成两个部分 语法调试,也就是确定能够运行 结果调试,也就是确定程序逻辑的正确 其实这个都离不开运行,所以我们说一下如何让开发的Spark程序运行. Spark的代码有一个特色,就是延时运行机制,就是当我们调用map等方法时,并不会立即触发运行. 而是会等待后续统一触发的处理. 所以我们需要在程序加入这个触发处理的环节. 这里分三步: 步骤1:在程序中使用append方法输出计算结果 appendResultRDD(exten…
Spark菜鸟学习营Day5 分布式程序开发 这一章会和我们前面进行的需求分析进行呼应,完成程序的开发. 开发步骤 分布式系统开发是一个复杂的过程,对于复杂过程,我们需要分解为简单步骤的组合. 针对每个简单步骤,难度会降低,学习成本降低 每个步骤都可以作为里程碑,可以反馈进展,同时,有助树立目标感. Step1:需求分析 1.1 拆分程序,形成步骤 以语句为单位拆分,一般一个语句就是一个步骤 1.2 对步骤进行分类 根据需求分析指南,分入A1.A2.B1等规则小类 1.3 分析每个步骤的输入输出…
Spark菜鸟学习营Day4 单元测试程序的编写 Spark相比于传统代码是比较难以调试的,单元测试的编写是非常必要的. Step0:需求分析 在测试案例编写前,需完成需求分析工作,明确程序所有的输入和输出情况. 具体请见需求分析章节. Step1:新建测试案例 测试案例统一放置在如下位置: compute-->src-->test-->java-->com.icbc.aas.darts.compute-->split.processor 选择New-->Java Cl…
Spark菜鸟学习营Day3 RDD编程进阶 RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lambda表示式来替换对象写法,可以使用到类型推断功能,减少对于类型的定义. 优化后代码如下: return this.getInputRDD(PracticePojo.class) .mapToPair( practicePojo -> new Tuple2<>(practicePojo.getSecurityId(…
Spark菜鸟学习营Day2 分布式系统需求分析 本分析主要针对从原有代码向Spark的迁移.要注意的是Spark和传统开发有着截然不同的思考思路,所以我们需要首先对原有代码进行需求分析,形成改造思路后,再着手开发. 对于输入和输出,请注意,指的是以程序为边界的输入和输出情况. 主要迁移点: A:批量数据清理 重点:分析要清理的表在哪里 A1.参数表:存放Oracle.Redis.清理Oracle就可以,Redis会同步清理 表一般是以par_开头 A2.输入数据表(由数据接收或者其他渠道导入)…