Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11422 Accepted: 5571 Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there ar…
题意:你懂得. 析:一看这个题应该是欧拉phi函数,也就说欧拉phi函数是指求从 1 到 n 中与 n 互素的数的个数,这个题很明显是这个意思嘛,不多说了. 代码如下: #include <iostream> #include <cstdio> #include <cstring> using namespace std; const int maxn = 32768 + 5; int phi[maxn+5]; void phi_table(int n){ memset…
updata on 2020.4.3 添加了欧拉\(\varphi\)函数为积性函数的证明和它的计算方式 1.积性函数 设\(f(n)\)为定义在正整数上的函数,若\(f(1)=1\),且对于任意正整数\(a,b\),若a,b互质就有: \[f(ab)=f(a)f(b) \] 则\(f(n)\)为积性函数 若不要求a,b互质,则\(f(n)\)为完全积性函数 2.计算 求出n的分解式 \(n=\prod_{i=1}^m {p_i}^{k_i}\),则有: \(f(n)=\prod_{i=1}^k…
容斥原理: 直接摘用百度词条: 也可表示为 设S为有限集, ,则 两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C 详细推理如下: 1. 等式右边改造 = {[(A+B - A∩B)+C - B∩C] - C∩A }+ A∩B∩C 2.文氏图分块标记如右图图:1245构成A,2356构成B,4567构成C 3.等式右边()里指的是下图的1+2+3+4+5+6六部分: 那…
Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=628&pid=1003 Description 从镜面材质的圆上一点发出一道光线反射NN次后首次回到起点. 问本质不同的发射的方案数. Input 第一行一个整数T,表示数据组数.T \leq 20T≤20 对于每一个组,第一行一个整数n(1 \leq n…
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int maxn = 1000015; bool u[maxn]; ll su[maxn]; ll num; ll…
思路: 因为当n>=1e10的时候,线性筛就不好使啦.所以要用一个公式 φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn) 证明详见:<公式证明:欧拉函数> Miller-Rabin算法: 判断某个数是否是素数,不是素数则返回一个因子. Pollard-Rho算法: 利用Miller-Rabin求出 质因数. 具体的: 如果当前的数不是质数,找质因数 再搜Rho(n/d)和Rho(d) 如果是质数(不一定准确),再去判断. #include…
POJ3090 给定一个坐标系范围 求不同的整数方向个数 分析: 除了三个特殊方向(y轴方向 x轴方向 (1,1)方向)其他方向的最小向量表示(x,y)必然互质 所以对欧拉函数前N项求和 乘2(关于(1,1)对称)再+3就是答案 给出代码 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> using namespace s…
题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 166 Accepted Submission(s): 96   Problem Description The Euler function phi is an important kind of function in number theory…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因子中含有p的q次方.然后让你求题目第一行给你的信息. 首先理一下思路. 第一步,我们需要算题目中要求的公式(第一行),首先,他是一个积性函数,所以我们先将题目中的第一行的式子命名为F(n).对于F(n),我们可以分着求他的每一个因子的解,然后最终将这一写乘起来就可以了. F(n) = F(p1^q1…
题目大意: 给定m n p 求下式   题解:https://blog.csdn.net/codeswarrior/article/details/81700226 莫比乌斯讲解:https://www.cnblogs.com/peng-ym/p/8647856.html 莫比乌斯的mu[]:https://www.cnblogs.com/cjyyb/p/7953803.html #include <bits/stdc++.h> using namespace std; #define LL…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 uva上做过gcd(x,y)=1的题 gcd(x,y)=p ---> gcd(x/p,y/p)=1 每个质数做一遍行了 答案是欧拉函数的前缀和*2…
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k)) f(0,k) = balabalabalabala 所以,实际上的f(n,k)是这么个东西 f(0,(0,(0,(0,(0,(0,(0,(0,k)))))))) 直接递归求解并打出表来,我们可以发现这样的事实 f(0,k) = k+1 所以有f(n,k) = n + k + 1; 所以题目就转…
51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质.  …
Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000000000,1<=B<=10^1000000). Input There are multiply testcases. Each testcase, there is one line contains three integers A, B and C, separated by a sin…
通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k次幂:$\phi(n)=p^k-p^{k-1}=(p-1)p^{k-1}$,因为除了p的倍数外,其他数都跟n互质. 设n为正整数,以$\phi(n)$表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数. 欧拉函数是积性函数——若m,n互质, $\p…
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((10^x)-1)*(8/9) 那么有m=((10^x)-1)*(8/9)=k*L,answer即满足条件的最小的x 性质1:若ax=by且a和b互质,那么说明a中没有任何b的质因子,b的质因子一定都在x里.所以x是b的倍数. 所以先想方设法在等式中构造两个互质的数以便化简.我们取p=8/gcd(8,L…
题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S[N]=f(1)+f(2)+...+f(N). 先求出每一个f(n). 令g(n,i)=[满足gcd(x,n)=i且x<N的x的数量],i是n的约数 那么f(n)=sigma[i*g(n,i)] (i即gcd的值,g(n,i)为数量) 又注意到gcd(x,n)=i -> gcd(x/i,n/i)=…
大白书P125 #include <iostream> #include <cstring> using namespace std; #define MMX 4000010 #define LL long long int phi[MMX],f[MMX]; LL S[MMX]; void calc_phi(int n) //求1--n的欧拉函数,phi[i]=φ(i) { ;i<=n;i++) phi[i]=; phi[]=; ;i<=n;i++) if (!phi[…
Reflect Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 288    Accepted Submission(s): 174 Problem Description We send a light from one point on a mirror material circle,it reflects N times and…
O(n) 筛选素数 #include<bits/stdc++.h> using namespace std; const int M = 1e6 + 10 ; int mindiv[M] ;//每个数的最小质因数 int prim[M] , pnum ;//存素数 bool vis[M] ; void prim () { for (int i = 2 ; i < M ; i ++) { if (!vis[i]) { mindiv[i] = i ; prim[ pnum++ ] = i ;…
题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost-K-Prime if it has exactly K prime numbers (not necessarily distinct) in its prime factorization. For example, 12 = 2 * 2 * 3 is an Almost-3-Prime and…
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n不互质,那么只要枚举n的全部约数,对于一个约数d,若使gcd(i/d,n/d)互质,这部分的gcd和=d*欧拉函数phi(n/d). 不断暴力从小到大枚举约数,这样就把gcd和切成好多个部分,累加起来就行了. 其实还可以公式化简,不过实在太繁琐了.可以参考金海峰神的解释. 由于要求好多欧拉函数,每次…
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质.   Input 输入一个数N.(2 <= N <= 10^9) Output 输出Phi(n). Input示例 8 Output示例 4 代码 #include<iostream> #include<cstring> #in…
1.HDU 2824   The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a,b)间的欧拉函数值的和. #include<iostream> #include<cstring> #include<cmath> #include<queue> #include<algorithm> #include<cstdio>…
2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 9231    Accepted Submission(s): 2837 Problem Description Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.   In…
Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11372   Accepted: 5544 Description Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if ther…
cojs 2181. 打表 ★☆   输入文件:sendtable.in   输出文件:sendtable.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 有一道比赛题目,输入两个整数x,y(1≤x,y≤n),输出某个函数f(x,y).有位选手想打表(即事先计算出所有的f(x,y),写在源代码里),但是表太大了,原代码超过了比赛的限制,需要精简. 好在那道题目有一个性质,使得很容易根据f(x,y)算出f(x*k,y*k)(其中k是正整数),这样有一些f(x,y)就…
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2092 Solved: 1325 [Submit][Status][Discuss] Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整…