首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
K-means算法的优缺点
】的更多相关文章
KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 4.训练过程:没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 5.K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label…
K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? 那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释.…
K最近邻算法
K最近邻(K-Nearest-Neighbour,KNN)算法是机器学习里简单易掌握的一个算法.通过你的邻居判断你的类型,“近朱者赤,近墨者黑”表达了K近邻的算法思想. 一.算法描述: 1.1 KNN算法的原理 KNN算法的前提是存在一个样本的数据集,每一个样本都有自己的标签,表明自己的类型.现在有一个新的未知的数据,需要判断它的类型.那么通过计算新未知数据与已有的数据集中每一个样本的距离,然后按照从近到远排序.取前K个最近距离的样本,来判断新数据的类型. 通过两个例子来说明KNN算法的原理 (…
机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据的…
机器学习(Machine Learning)算法总结-K临近算法
一.算法详解 1.什么是K临近算法 Cover 和 Hart在1968年提出了最初的临近算法 属于分类(classification)算法 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一. 所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性. 该方法在…
KMeans (K均值)算法讲解及实现
算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标.K个初始聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机地选取任意k个对象作为初始聚类中心,初始地代表一个簇.该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离赋给最近的簇.当考查完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来.算法过程如下:(1)…
聚类分析K均值算法讲解
聚类分析及K均值算法讲解 吴裕雄 当今信息大爆炸时代,公司企业.教育科学.医疗卫生.社会民生等领域每天都在产生大量的结构多样的数据.产生数据的方式更是多种多样,如各类的:摄像头.传感器.报表.海量网络通信等等,面对这海量结构各式各样的数据,如果单是依靠人力来完成,是件非常不现实的事,但这些数据又包含着许多对我们有很高价值的信息.面对这样的矛盾,我们必须通过一些方法来科学.高效地分析.处理这些数据,最后输出能够让人或者机器作出无差别的行为判断.聚类分析——就是解决这类问题的一种典型方法,它是基于生…
R语言学习笔记—K近邻算法
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适合分类,也适合回归.KNN算法广泛应用在推荐系统.语义搜索.异常检测. KNN算法分类原理图: 图中绿色的圆点是归属在红色三角还是蓝色方块一类?如果K=5(离绿色圆点最近的5个邻居,虚线圈内),则有3个蓝色方块是绿色圆点的“最近邻居”,比例为3/5,因此绿色圆点应当划归到蓝色方块一类:如果K=3(离…
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
【机器学习】k近邻算法(kNN)
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Learning in Action一书和Ng的公开课,当然仅有这些是远远不够的,更深入的研究分析可以参见其他国外的论文及站点,此处不再一一列举.机器学习更多的是建模应用,这里仅是一个概要总结,并归纳分析各种算法优缺点,这些都是要了如指掌并且非常熟悉的. 关于机器学习: 基本上目前互联网公司的机器学习/…