CNN延拓至 复数域】的更多相关文章

前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里不作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概80%,效果还不错,完全能满足使用,如…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
最近在做一个CNN车型分类的任务,首先先简要介绍一下这个任务. 总共30个类,训练集图片为车型图片,类似监控拍摄的车型图片,训练集测试集安6:4分,训练集有22302份数据,测试集有14893份数据. 首先使用的是VGGNet网络, nn.Sequential { [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -&g…
Pooling 为了解决convolved之后输出维度太大的问题 在convolved的特征基础上采用的不是相交的区域处理     http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 这里有一个cnn较好的介绍     Pooling also reduces the output dimensionality but (hopefully) keeps the most salie…
基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics Tracklet Association MTT MOT 读 'B. Wang, L. Wang, et.al. Joint Learning of Siamese CNNs and Temporally Constrained Metrics for Tracklet Association[j],…
典型的卷积神经网络. Keras傻瓜式读取数据:自动下载,自动解压,自动加载. # X_train: array([[[[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0.…
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=Tru…
现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等.(如果是冬天的情况下,行人穿着厚实,性别识别更加难) solution: 针对难以提取特定特征的图像,可以采用卷积神经网络CNN去自动提取并训练. 数据准备:  采用 PETA数据集,Pedestrain Attribute Recognition At Far Distance. 该数据集一共包…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
卷积神经网络是第一个被成功训练的多层神经网络结构,具有较强的容错.自学习及并行处理能力. 一.基本原理 1.CNN算法思想 卷积神经网络可以看作为前馈网络的特例,主要在网络结构上对前馈网络进行简化和改进,从理论上讲,反向传播算法可以用于训练卷积神经网络.卷积神经网络被广泛用于语音识别和图像分类等问题. 2.CNN网络结构 卷积神经网络是一种多层前馈网络,每层由多个二维平面组成.每个平面由多个神经元组成. 网络输入为二维视觉模式,作为网络中间层的卷积层(C)和抽样层(S)交替出现.网络输出层为前馈…
人脸相似度检测主要是检测两张图片中人脸的相似度,从而判断这两张图片的对象是不是一个人. 在上一篇文章中,使用CNN提取人脸特征,然后利用提取的特征进行分类.而在人脸相似度检测的工作中,我们也可以利用卷积神经网络先提取特征,然后对提取的特征进行利用. 我们取fc7提取的4096维特征,然后对两个向量进行pairwise相似度检测,即可得到人脸相似度,然后设定一个阈值,判断是否维同一个人.…
很久之前做的东西了,最近做了一个人脸相似度检测,里面用到了这里的一个模型,所以抽个空把人脸年龄检测的思路总结一下. 与其他CNN分类问题类似,人脸年龄预测无非就是将人脸分为多个类别,然后训练卷积神经网络,最后利用训练好的卷积神经网络进行分类即可. 但是在人脸年龄分类方面,有几个比较重要的问题,第一,人脸数据集不好获取,第二,人脸对偏移,光照敏感度很高.第三,特征不容易提取. 在数据集方面,我直接用了歪果仁的一个数据集,大概有40W张图片,分为100个年龄类,虽然质量不高,但是勉强可用. 对人脸图…
自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此 博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用. 第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知…
无类别,图像混合放置: clear close all addpath ./matlab model= './models/bvlc_reference_caffenet/deploy.prototxt'; weights= './models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'; mean = load('./matlab/+caffe/imagenet/ilsvrc_2012_mean.mat'); net…
建议按序阅读 1. Convolutional Neural Networks卷积神经网络: http://blog.csdn.net/zouxy09/article/details/8781543 2. Deep learning:三十八(Stacked CNN简单介绍): http://www.cnblogs.com/tornadomeet/archive/2013/05/05/3061457.html 3. 深度学习(卷积神经网络)一些问题总结 http://blog.csdn.net/n…
斯坦福课程CS224d: Deep Learning for Natural Language Processing lecture13:Convolutional neural networks -- for sentence classification 主要是学习笔记,卷积神经网络(CNN),因为其特殊的结构,在图像处理和语音识别方面都有很出色的表现.这里主要整理CNN在自然语言处理的应用和现状. 一.RNNs to CNNs 学过前面lecture的朋友,应该比较清楚.RNNs一般只能获…
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢迎转载,但请标明出处! <基于区域生长的良性和恶性乳腺肿瘤的分类> 摘要 良性肿瘤被认为是导致女性死亡的常见起因之一,对良性肿瘤的早期检测能够提高患者的生存率,因此创造一个能够检测乳腺的可疑组织的系统是非常重要的.本文提出两种自动检测良性和恶性肿瘤的方法,第一种方法中,使用自动的区域生长法进行图形…
Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用. 转 http://blog.csdn.net/stdcoutzyx/article/details/41596663 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法.20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈…
关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目研究所. 说白了,就是看你穷的没钱搞研究,就施舍给你.Hinton.Bengio和他的学生在2004年拿到了Cifar投资的少量资金,建立了神经计算和自适应感知项目. 这个项目结集了不少计算机科学家.生物学家.电气工程师.神经科学家.物理学家.心理学家,加速推动了DL的进程.从这个阵容来看,DL已经…
用CNN分类Mnist http://www.bubuko.com/infodetail-777299.html /DeepLearning Tutorials/keras_usage 提取出来的特征训练SVMhttp://www.bubuko.com/infodetail-792731.html ./dive_into _keras 自己动手写demo实现…
零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了,最近随着深度学习的兴起又开始焕发青春了,把imagenet测试的准确度提高了非常多,一个是Alex的工作,然后最近好像Zeiler又有突破性的成果,可惜这些我都没看过,主要是imagenet的数据太大了,我根本没有可能跑得动,所以学习的积极性有些打折扣.不说那么多,还是先实现一个最基础的CNN再说吧…
参考: http://blog.csdn.net/iamrichardwhite/article/details/51089199 一.神经网络的发展历史 五六十年代,提出感知机 八十年代,提出多层感知机,也就是神经网络,神经网络的层数直接决定了它对现实的刻画能力. 但是,多层神经网络带来了一些问题: 优化函数越来越容易陷入局部最优解 梯度消失现象更加严重 06年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层,神经网络有了真正意义上的深度,解开了深度学习DNN的热潮.近期…
一.CNN的原理 1.CNN的思想: (1)借鉴了hopfield神经网络和CA a.hopfield的非线性动力学(主要是用于优化问题,比如旅行商问题等NP问题),Hopfield的能量函数的概念,Hopfield解决了模拟电路的实现问题 b.CA细胞自动机,局部连接的时间和空间都离散的动力学系统,CNN借鉴了CA的细胞的概念和局部性.一致性.平行性等特点 2.结构和模型 (1)结构图如下图所示: (2)理论模型 半径和领域:半径r和领域N(r),3*3邻域和5*5邻域等 CNN的状态方程:…
A CNN Cascade for Landmark Guided Semantic Part Segmentation  ECCV 2016 摘要:本文提出了一种 CNN cascade (CNN 级联)结构,根据一系列的定位(landmarks or keypoints),得到特定的 pose 信息,进行 语义 part 分割.前人有许多单独的工作,但是,貌似没有将这两个工作结合到一起,相互作用的 multi-task 的工作.本文就弥补这个缺口,提出一种 CNN cascade 的 tas…
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function CVPR 2016 摘要:跨摄像机的行人再识别仍然是一个具有挑战的问题,特别是摄像机之间没有重叠的观测区域.本文中我们提出一种 多通道 基于part 的卷积神经网络模型,并且结合 改善的三元组损失函数 来进行最终的行人再识别.具体来说,所提出的 CNN 是由多个channel构成的,可以联合的学习 global…
供大家相互交流和学习,本人水平有限,若有各种大小错误,还请巨牛大牛小牛微牛们立马拍砖,这样才能共同进步!若引用译文请注明出处http://www.cnblogs.com/charleshuang/. 本文译自:http://deeplearning.net/tutorial/lenet.html 文章中的代码截图不是很清晰,可以去上面的原文网址去查看. 1.动机 卷积神经网络(CNN)是多层感知机(MLP)的一个变种模型,它是从生物学概念中演化而来的.从Hubel和Wiesel早期对猫的视觉皮层…
Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程. 用了他的代码在theano下测试了下中文车牌字符的识别.由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了. 一共 31 类 车牌中文字符数据来源于…
最近读了Joint Training of Cascaded CNN for Face Detection这篇论文,论文中把之前人脸检测使用到的cascade cnn,从分开训练的模式,改为了联合训练,并且声称得到了更好的结果. 但是在我读论文的过程中,产生了下面几点疑惑: 1.论文4.2节的Training procedure这部分最后提到,To make it converge easily, we train seperate networks and initialize the joi…