XWW的难题(bzoj 3698)】的更多相关文章

3698: XWW的难题 题意:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和.给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然满足.要求A中的元素之和尽量大. 我不知花了多少个小时想为什么这样求出的最大流就是原图的最大流,并没有人来解释这件事... 建图太简单了,注意给出的可能本来就是整数 我把每种做法都试了一遍,都可以通过2333 #include <iostream> #inc…
3698: XWW的难题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 354  Solved: 178[Submit][Status][Discuss] Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XWW性.称一个N*N的矩阵满足XWW性当且仅当:(1)A[N][N]=0…
3698: XWW的难题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 533  Solved: 275[Submit][Status][Discuss] Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XWW性.称一个N*N的矩阵满足XWW性当且仅当:(1)A[N][N]=0…
[BZOJ3698]XWW的难题 Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XWW性.称一个N*N的矩阵满足XWW性当且仅当:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和.现在你要给A中的数进行取整操作(可以是上取整或者下取整),…
Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XWW性.称一个N*N的矩阵满足XWW性当且仅当:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和.现在你要给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然满足XWW性.…
题面 XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XWW性. 称一个N*N的矩阵满足XWW性当且仅当:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和. 现在你要给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然满足XWW性.同时XWW还…
Description XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核. XWW给你出了这么一个难题:XWW给你一个N × N的正实数矩阵A,满足XWW性. 称一个N × N的矩阵满足XWW性当且仅当:(1)A[N][N]=0:(2)矩阵中每行的最后一个元素等于该行前N-1个数的和:(3)矩阵中每列的最后一个元素等于该列前N-1个数的和. 现在你要给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然…
传送门 题意 给你一个 $ n*n $ 的正实数矩阵 $ A $ ,满足XWW性. 称一个 $ n*n $ 的矩阵满足XWW性当且仅当: $ A[n][n] = 0 $ 矩阵中每行的最后一个元素等于该行前 $ n-1 $ 个数的和(除最后一行) 矩阵中每列的最后一个元素等于该列前 $ n-1 $ 个数的和(除最后一列) 现在你要给 $ A $ 中的数进行取整操作(可以是上取整或者下取整),使得最后的 $ A $ 矩阵仍然满足XWW性. 问你 $ A $ 中元素之和最大为多少.如果无解,输出"No…
[题意] 对每个格子确定上下取整,使得满足1.A[n][n]=0 2.每行列前n-1个之和为第n个 3.格子之和尽量大. [思路] 设格子(i,j)上下取整分别为up(i,j)down(i,j),构图如下: S,Xi,[ down(i,n),up(i,n) ] ,i<n Yi,T,[ down(n,i),up(n,i) ] ,i<n Xi,Yj,[down(i,j),up(i,j) ] , i<n ,j<n 于是问题转化成了有源汇的上下界最大流问题. [代码] #include&l…
题目链接 按套路行列作为两部分,连边 \(S->row->column->T\). S向代表行的元素连边cap(A[i][n])(容量上下界为上下取整),代表列的元素向T连边cap(A[n][i]),对于每个元素(i,j)由行i向列j连边cap(A[i][j]). 考虑我们建的这张图实际流量是什么,对于 \(S->Row_i->(i,j)->Col_j->T\),设这是x的流量,实际表示A[i][n]多加了x,A[i][j]多加了x,A[n][i]多加了x: 答案…