生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. 不太会算复杂度为什么是$n\log {n}$的. 开根号里套了一个求逆,不应该是两个$\log$? #include <map> #include <cmath> #include <queue> #include <cstdio> #include <c…
3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 130[Submit][Status][Discuss] Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们…
参考:https://www.cnblogs.com/2016gdgzoi509/p/8999460.html 列出生成函数方程,g(x)是价值x的个数 \[ f(x)=g(x)*f^2(x)+1 \] +1是f[0]=1 根据公式解出 \[ f(x)=\frac{1+(-)\sqrt{1-4*g(x)}}{2*g(x)} \] 舍去+的答案,分式上下同乘\( 1-\sqrt{1-4*g(x)} \) \[ f(x)=\frac{2}{1+\sqrt{1-4*g(x)}} \] 然后套多项式开跟…
Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和.给出一个整数m,你能对于任意的s(1<=s<=m)计算出权值为s的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的.我们只需要知道答案关于9…
设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以考虑生成函数. 设F(x)为f(n)的生成函数,G(x)为c(n)的生成函数,G(x)中含有xa项表示存在ci=a.于是可得F(x)=F2(x)G(x)+1.+1是因为枚举根的权值时没有考虑空树即根没有权值的情况. 可以解出F(x)={1±√[1-4G(x)]}/2G(x)=2/{1±√[1-4G(…
https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\(i\)在不在集合中. \[ F[n]=\sum_{i=0}^n \sum_{j=0}^{n-i}F[i]\cdot F[j]\cdot A[n-i-j] \] 初始状态\(F[0]=1\). 我们把\(F,A\)看成多项式. \[ F(x)-1=F^2(x)\cdot A(x)\\ A(x)\cdo…
题目描述: bzoj luogu 题解: 生成函数ntt. 显然这种二叉树应该暴力薅掉树根然后分裂成两棵子树. 所以$f(x)= \sum_{i \in c} \sum _{j=0}^{x-c} f(i)*f(x-i-j)$ 这是个不好看的卷积. 所以我们再引入$c$的生成函数$G$,那么有$$F(x)=1+G(x)*F(x)*F(x)$$ 注意常数项,因为正常$f(0)=1$但是$G(0)=0$,所以要人为配常数. 然后$F= \frac{1 \pm \sqrt{1-4G}} {2G} = \…
题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \(F(x)=\frac {1+\sqrt{1-4C(x)}}{2C(x)}=\frac 2{1-\sqrt{1-4C(x)}}\) 无解是因为\(x=0\)时\(F(x)=1\) 但是\(\lim\limits_{x\rightarrow 0}\)时\(1-\sqrt{1-4C(x)}趋于0\) \(…
传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: Expected 'EOF', got '\inC' at position 4: v_i\̲i̲n̲C̲=\{a_1,a_2,...a-,定义一棵树的权值为所有点的权值之和,问有多少棵树满足其权值等于i(i=1,2,...,m)i(i=1,2,...,m)i(i=1,2,...,m) 对每个点的…
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$[x^n]F(x)=\sum_{i=0}^{n}[x^i]G(x)\sum_{j=0}^{n-i}[x^j]F(j)\times [x^{n-j-i}]F(n-j-i)$. (这个式子的意思就是说,不妨设当前根节点的权值为i,然后枚举左右两个子树的权值) 这个式子显然可以通过动规的方式去推,从而得出…