基于SVD的图像压缩】的更多相关文章

算法简介 算法实现 我只是简单处理了一下图像的灰度值,如果要处理RGB值的话,就需要分别进行SVD分解,最后再合起来即可. import numpy as np from PIL import Image import matplotlib.pyplot as plt def picture_processing(file): # 图像处理,返回灰度值 im = Image.open(file) im = im.convert('L') # 转换为灰度图 #im.save('original_'…
首先每行减去每列的均值,然后svd分解,得到USV,然后US代表用户矩阵u,SV代表项目矩阵v,那么预测评分为用户均值加上uv. 降维方法扩展性好,不过降维导致信息损失,而且与数据及相关,高维情况下效果难保证.…
首先要声明,图片的算法有很多,如JPEG算法,SVD对图片的压缩可能并不是最佳选择,这里主要说明SVD可以降维 相对于PAC(主成分分析),SVD(奇异值分解)对数据的列和行都进行了降维,左奇异矩阵可以用于行数的压缩.相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维. 一张二维n*m的灰度图片可以看做是n*m的矩阵,利用SVD可以实现对二维图像的压缩 1.按照灰度图片进行压缩: #-*- coding: utf-8 -* import numpy as np from PI…
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actionhttps://github.com/pbharrin/machinelearninginaction ****************************…
特征值与特征向量 下面这部分内容摘自:强大的矩阵奇异值分解(SVD)及其应用 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征.先谈谈特征值分解吧: 如果说一个向量v是方阵A的特征向量,则可以表示成下面的形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量.特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对…
第14章 利用SVD简化数据 SVD 概述 奇异值分解(SVD, Singular Value Decomposition): 提取信息的一种方法,可以把 SVD 看成是从噪声数据中抽取相关特征.从生物信息学到金融学,SVD 是提取信息的强大工具. SVD 场景 信息检索-隐形语义检索(Lstent Semantic Indexing, LSI)或 隐形语义分析(Latent Semantic Analysis, LSA) 隐性语义索引:矩阵 = 文档 + 词语 是最早的 SVD 应用之一,我们…
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在生物信息学.信号处理.金融学.统计学等领域有重要应用,SVD都是提取信息的强度工具.在机器学习领域,很多应用与奇异值都有关系,比如推荐系统.数据压缩(以图像压缩为代表).搜索引擎语义层次检索的LSI等等.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 …
一,引言 我们知道,在实际生活中,采集到的数据大部分信息都是无用的噪声和冗余信息,那么,我们如何才能剔除掉这些噪声和无用的信息,只保留包含绝大部分重要信息的数据特征呢? 除了上次降到的PCA方法,本次介绍另外一种方法,即SVD.SVD可以用于简化数据,提取出数据的重要特征,而剔除掉数据中的噪声和冗余信息.SVD在现实中可以应用于推荐系统用于提升性能,也可以用于图像压缩,节省内存. 二,利用python事先SVD 1 svd原理--矩阵分解   在很多情况下,数据中的一小段携带了数据集的大部分信息…
内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. <机器学习实战>主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法.朴素贝叶斯算法.Logistic回归算法.支持向量机.AdaBoost集成方法.基于树的回归算法和分类回归树(CART)算法等.第三部分则重点介绍无监督…
SVD(Singular Value Decomposition,奇异值分解) 算法优缺点: 优点:简化数据,去除噪声,提高算法结果 缺点:数据的转换可能难于理解 适用数据类型:数值型数据 算法思想: 很多情况下,数据的一小部分包含了数据的绝大部分信息,线性代数中有很多矩阵的分解技术可以将矩阵表示成新的易于处理的形式,不同的方法使用与不同的情况.最常见的就是SVD,SVD将数据分成三个矩阵U(mm),sigma(mn),VT(nn),这里得到的sigma是一个对角阵,其中对角元素为奇异值,并且它…