Machine Learning学习资源】的更多相关文章

引申:非原创,转载来自:https://blog.csdn.net/ptkin/article/details/50995140…
不多说,直接上干货! 十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征.高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达.…
[Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为"对数几率回归",是一种分类学习方法.和先前的线性回归模型不同的是,输出的y一般是离散量的集合,如输出\(y \in \{0,1\}\)的二分类任务. 考虑二分类任务,线性回归模型产生的\(Z=\theta ^TX\)是连续的实值,需要用一个函数\(g(\theta ^TX)\)将z转换为0/1值.…
点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1-Score, recall, precision Softmax Classifier (三个隐含层) Softmax Classifier (两个隐含层) Softmax classifier (一个隐含层) Softmax classifier (无隐含层) 机器视觉: LBP-TOP 机器视觉…
1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最先是由David Cournapeau在2007年发起的一个Google Summer of Code项目,从那时起这个项目就已经拥有很多的贡献者了,而且该项目目前为止也是由一个志愿者团队在维护着. scikit-learn最大的特点就是,为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数…
从2016年年初,开始用python写一个简单的爬虫,帮我收集一些数据. 6月份,开始学习Machine Learning的相关知识. 9月开始学习Spark和Scala. 现在想,整理一下思路. 先感谢下我的好友王峰给我的一些建议.他在Spark和Scala上有一些经验,让我前进的速度加快了一些. 学习算法 作为一个程序猿,以前多次尝试看过一些机器学习方面的书,其过程可以说是步履阑珊,碰到的阻力很大. 主要原因是,读这些机器学习的书,需要有一些数学方面的背景. 问题就在这些数学背景上,这些背景…
What is machine learning? 并没有广泛认可的定义来准确定义机器学习.以下定义均为译文,若以后有时间,将补充原英文...... 定义1.来自Arthur Samuel(上世纪50年代.西洋棋程序) 在进行特定编程的情况下给予计算机学习能力的领域. 定义2.来自Tom Mitchell(卡内基梅隆大学) 一个好的学习问题定义如下:一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P, 当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升. 机器学习分类 监…
这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Algorithm6.1.1 Deciding What to Try Next机器学习诊断法:一种测试法,通过执行这种测试,能够深入了解某种算法是否有用.诊断法也会告诉你,要想改进一种算法的效果需要什么样的尝试.能够判断一种学习算法能不能work,并且改善该算法性能的一个测试. 诊断法的执行和实现是需…
原文地址: https://www.cnblogs.com/steven-yang/p/5857964.html ---------------------------------------------------------------------------------------------------------- 从2016年年初,开始用python写一个简单的爬虫,帮我收集一些数据.6月份,开始学习Machine Learning的相关知识.9月开始学习Spark和Scala.现在…
看到Max Welling教授主页上有不少学习notes,收藏一下吧,其最近出版了一本书呢还,还没看过. http://www.ics.uci.edu/~welling/classnotes/classnotes.html Statistical Estimation [ps]- bayesian estimation- maximum a posteriori (MAP) estimation- maximum likelihood (ML) estimation- Bias/Variance…