tensorflow例子-【老鱼学tensorflow】】的更多相关文章

前面我们用Tensorboard显示了tensorflow的程序结构,本节主要用Tensorboard显示各个参数值的变化以及损失函数的值的变化. 这里的核心函数有: histogram 例如: tf.summary.histogram(layer_name + "/weights", Weights) 这里用tf.summary.histogram函数来显示二维数据在不同网络层的变化情况,其中第一个参数是名字,可以用/来进行分层显示,第二个参数就是相应变量的值. scalar tf.…
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我们这次使用CNN卷积神经网络来进行识别. 卷积神经网络我的理解是部分模仿了人眼的功能. 我们在看一个图像时不是一个像素点一个像素点去分辨的,我们的眼睛天然地具有大局观,我们看到某个图像时自动地会把其中的细节部分给聚合起来进行识别,相反,如果我们用个放大镜看到其中的各个像素点时反而不知道这是啥东西了.…
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 安装 在windows中我们以最简单的方式进行安装. C:\> pip3 install --upgrade tensorflow 如果你机器有GPU的话,可以用如…
本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律. 伪造数据 import numpy as np # 创建100个随机数 x_data = np.random.rand(100).astype(np.float32) # 创建最终要模拟的线性公式 y_data = x_data * 0.1 + 0.3 创建模型 在伪造数据之后,我们当作不知道这…
之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时间轴上慢慢展开,有点类似我们大脑认识事物时会有相关的短期记忆. 这次我们使用RNN来识别手写数字. 首先导入数据并定义各种RNN的参数: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat…
在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训练数据,但是并没有描述数据的整体特征,对新测试数据的适应性较差. 一般用于解决过拟合的方法有增加权重的惩罚机制,比如L2正规化,但在本处我们使用tensorflow提供的dropout方法,在训练的时候, 我们随机忽略掉一些神经元和神经联结 , 使这个神经网络变得"不完整". 用一个不完整…
在tensorflow中,当定义好结构后,就要通过tf.session()来建立运行时的会话. 本例子应该不难理解,我们用tensorflow来计算一下一个1行2列的矩阵和2行1列矩阵的乘积: import tensorflow as tf # 1行2列的矩阵 mat1 = tf.constant([[3, 3]]) # 2行1列的矩阵 mat2 = tf.constant([[2], [2]]) out = tf.matmul(mat1, mat2) sess = tf.Session() p…
在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义了一个变量,这个通讯的空间就是tf类,看个例子就应该能明白: import tensorflow as tf state = tf.Variable(0) print(state.name) 这里定义了一个tensorflow变量,并且设置了一个初始值0,在tensorflow世界中每个变量也有其相…
上个文章中讲述了tensorflow中如何定义变量以及如何读取变量的方式,本节主要讲述关于传入值. 变量主要用于在tensorflow系统中经常会被改变的值,而对于传入值,它只是当tensorflow系统运行时预先设置的值,然后在运行期间不会被改变,有点类似函数中的不可变的输入参数. 传入值同常量之间的差别是:常量在tensorflow系统运行之前就已经确定了的值,无法对其进行任何的改变. 而传入值或称为placeholder是在系统运行前需要对其进行设置相应的值. 我们来看一个例子,这个例子只…
当我们对模型进行了训练后,就需要把模型保存起来,便于在预测时直接用已经训练好的模型进行预测. 保存模型的权重和偏置值 假设我们已经训练好了模型,其中有关于weights和biases的值,例如: import tensorflow as tf # 保存到文件 W = tf.Variable([[1, 2, 3], [3, 4, 5]], dtype=tf.float32, name='weights') b = tf.Variable([[1, 2, 3]], dtype=tf.float32,…