有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\(v_i\)的有向路径,则称两个顶点强连通(\(strongly\ connected\)).如果有向图\(G\)的每两个顶点都强连通,称\(G\)是一个强连通图.有向图的极大强连通子图,称为强连通分量(\(strongly\ connected\ components\)). 万能的\(Tarjan\)算…
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连通分量就是极大强连通分量. [算法思想] 用dfs遍历G中的每个顶点,通dfn[i]表示dfs时达到顶点i的时间,low[i]表示i所能直接或间接达到时间最小的顶点.(实际操作中low[i]不一定最小,但不会影响程序的最终结果) 程序开始时,time初始化为0,在dfs遍历到v时,low[v]=df…
有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 采用的算法是Kosaraju算法. 算法原理:对于图G,转置图(同图中的每边的方向相反)具有和原图完全一样的强连通分量. 具体实现: 1.对原图G进行深度优先遍历,记录每个节点的离开时间time[i]. 2…
/* 题目大意:有N个cows, M个关系 a->b 表示 a认为b popular:如果还有b->c, 那么就会有a->c 问最终有多少个cows被其他所有cows认为是popular! 思路:强连通分量中每两个节点都是可达的! 通过分解得到最后一个连通分量A, 如果将所有的强连通分量看成一个大的节点,那么A一定是孩子节点(因为我们先 完成的是父亲节点的强连通分量)! 最后如果其他的强连通分量都可以指向A,那么 A中的每一个cow都会被其他cows所有的cows认为popular! *…
在此大概讲一下初学Tarjan算法的领悟( QwQ) Tarjan算法 是图论的非常经典的算法 可以用来寻找有向图中的强连通分量 与此同时也可以通过寻找图中的强连通分量来进行缩点 首先给出强连通分量的定义: 若在有向图G中 存在u到v的路径的同时也存在v到u的路径 则称u与v是强连通的 若G中所有点之间两两之间是强连通的则称G为一个强连通图 一个有向非强连通图的极大强连通子图称为强连通分量 极大强连通子图:G是一个极大强连通子图 当且仅当G是一个强连通图 同时不存在另一个强连通图G'使G是它的真…
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被称为"点双连通分量",记为"\(v-DCC\)".无向图图的极大边双连通子图被称为"边双连通分量",记为"\(e-DCC\)". 没错,万能的图论连通性算法\(Tarjan\)又来了. 预备知识 时间戳 图在深度优先遍历的过程中,…
好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了) 所以今天要写的是一个高大上的东西:强连通 首先,是一些强连通相关的定义 //来自度娘 1.强连通图(Strongly Connected Graph)是指在有向图G中,如果对于每一对vi.vj,vi≠vj,从vi到vj和从vj到vi都存在路径,则称G是强连通图. 2.有向图的极大强连通子图,称为强连通分量(strongly connected components). 当然,看定义是肯定看不懂的,所以,我举个栗子说明一下 我们以下图为例,这是…
百度百科 https://baike.baidu.com/item/tarjan%E7%AE%97%E6%B3%95/10687825?fr=aladdin 参考博文 http://blog.csdn.net/qq_34374664/article/details/77488976 http://blog.csdn.net/mengxiang000000/article/details/51672725 https://www.cnblogs.com/shadowland/p/5872257.h…
https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量. 定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号.由定义可以得出, Low(u)=Min { DFN(u), Low(v),(u,v)为树枝边,u为v的父节点 DFN…
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和顶点W是强连通的,那么顶点W和顶点V也是强连通的 传递性:如果V和W是强连通的,W和X是强连通的,那么V和X也是强连通的 强连通性可以用来描述一系列属性,如自然界中物种之间的捕食关系,互相捕食的物种可以看作等价的,在自然界能量传递中处于同一位置. 下图中,子图{1,2,3,4}为一个强连通分量,因为…