R语言-组间差异的非参数检验】的更多相关文章

R语言-组间差异的非参数检验 7.5 组间差异的非参数检验 如果数据无法满足t检验或ANOVA的参数假设,可以转而使用非参数方法.举例来说,若结果变量在本质上就严重偏倚或呈现有序关系,那么你可能会希望使用本节中的方法. 7.5.1 两组的比较 若两组数据独立,可以使用Wilcoxon秩和检验(更广为人知的名字是Mann–Whitney U检验)来评估观测是否是从相同的概率分布中抽得的(即,在一个总体中获得更高得分的概率是否比另一个总体要大).调用格式为: 其中的y是数值型变量,而x是一个二分变量…
本文对应<R语言实战>第6章:基本图形:第7章:基本统计分析 ================================================================================================================================================== 本章讨论的图形,主要用于分析数据前,对数据的初步掌握.想要对数据有一个初步的印象,最好的方式就是观察它,也就是将数据可视化.在这个过程中,我们…
summary() sapply(x,fun,options):对数据框或矩阵中的每一个向量进行统计 mean sd:标准差 var:方差 min: max: median: length: range: quantile: vars <- c("mpg", "hp", "wt")head(mtcars[vars]) summary(mtcars[vars]) mystats <- function(x, na.omit = FALS…
R 语言实战(第二版) part 2 基本方法 -------------第6章 基本图形------------------ #1.条形图 #一般是类别型(离散)变量 library(vcd) help(Arthritis) #类风湿性关节炎新疗法研究结果 head(Arthritis) count <- table(Arthritis$Improved) barplot(count,main="simple bar plot",xlab = "improvement…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
R 语言实战(第二版) part 5-2 技能拓展 ----------第21章创建包-------------------------- #包是一套函数.文档和数据的合集,以一种标准的格式保存 #1.测试npar包.进行非参组间比较 pkg <- "npar_1.0.tar.gz" loc <- "http://www.statmethods.net/RiA" url <- paste(loc,pkg,sep = "/") d…
首先写第二部分的前言. 第二部分用来介绍获取数据基本信息的图形技术和统计方法. 本章主要内容 条形图.箱型图.点图 饼图和扇形图 直方图和核密度图 分析数据第一步就是要观察它,用可视化的方式是最好的.本章的主题有两个 1.将变量的分布作可视化展示 2.通过结果变量进行跨组比较 下面从不同的图形开始探索数据. 6.1条形图 6.1.1简单地条形图 条形图是通过条形展示离散变量的频数分布.函数是barplot: barplot(height) height是主要参数,horiz = TRUE就是横向…
散点图 数据点在直角坐标系平面上的分布图.在宏基因组领域,散点图常用于展示样品组间的Beta多样性,常用的分析方法有主成分分析(PCA),主坐标轴分析(PCoA/MDS)和限制条件的主坐标轴分析(CPCoA/CCA/RDA).   Beta多样性 Beat多样性是生态学概念,专指不同组或生态位间物种组成的差异.   分析方法 在读文章中经常可以看到PCA分析.PCoA分析,NMDS分析,CCA分析,RDA分析.它们在本质上是排序(ordination)分析.排序的过程就是在一个可视化的低维空间(…
方差分析指的是不同变量之间互相影响从而导致结果的变化 1.单因素方差分析: 案例:50名患者接受降低胆固醇治疗的药物,其中三种治疗条件使用药物相同(20mg一天一次,10mg一天两次,5mg一天四次),剩下的两种方式是(drugE和drugD),代表候选药物 哪种药物治疗降低胆固醇的最多? library(multcomp) attach(cholesterol) # 1.各组样本大小 table(trt) # 2.各组均值 aggregate(response,by=list(trt),FUN…
目的: 1.描述性统计分析 2.频数表和;列连表 3.相关系数和协方差 4.t检验 5.非参数统计 在上一节中使用了图形来探索数据,下一步就是给出具体的数据来描述每个变量的分布和关系 1.描述性统计分析 探究案例:各类车型的油耗如何?对车型的调查中,每加仑汽油行驶的英里数分布是什么形式(均值,标准差,中位数,值域等) 1.1使用内置的summary函数来获取最小值,最大值,四分位数和数值型变量的均值 myvals <- c('mpg','hp','wt') head(mtcars[myvals]…