请注意更新TensorFlow 2.0的旧代码】的更多相关文章

TensorFlow 2.0 将包含许多 API 变更,例如,对参数进行重新排序.重新命名符号和更改参数的默认值.手动执行所有这些变更不仅枯燥乏味,而且容易出错.为简化变更过程并让您尽可能顺畅地过渡到 TensorFlow 2.0,TensorFlow 工程团队创建了实用程序 tf_upgrade_v2,可帮助您将旧代码转换至新 API. 60s测试:你是否适合转型人工智能? https://edu.csdn.net/topic/ai30?utm_source=cxrs_bw 传送门: tf_u…
很多次和身边的同学交流,帮助同学修改代码,互相分享经验,却发现同学们依然在使用老旧的VC6.0作为编程学习的软件,不由得喊出:“请不要继续使用VC6.0了!”. VC6.0作为当年最好的IDE(集成开发环境 Integrated Development Environment),它的编译器能够完美满足当年人们的开发需求,但是随着时间变化它也逐渐失去了当初的优势,新的IDE不断涌现,而且VC6.0在多年后已经不能适应不断推出的编程语言新标准,例如常用的vector库就无法包含,更是无法使用C11的…
机器之心报道 作者:邱陆陆 8 月中旬,谷歌大脑成员 Martin Wicke 在一封公开邮件中宣布,新版本开源框架——TensorFlow 2.0 预览版将在年底之前正式发布.今日,在上海谷歌开发者大会上,机器之心独家了解到一个重大的改变将会把 Eager Execution 变为 TensorFlow 默认的执行模式.这意味着 TensorFlow 如同 PyTorch 那样,由编写静态计算图全面转向了动态计算图. 谷歌开发者大会 在谷歌开发者大会的第二天,主会场全天都将进行 TensorF…
TensorFlow Hub 模型复用 TF Hub 网站 打开主页 https://tfhub.dev/ ,在左侧有 Text.Image.Video 和 Publishers 等选项,可以选取关注的类别,然后在顶部的搜索框输入关键字可以搜索模型. TF Hub 安装 是单独的一个库,需要单独安装,安装命令如下: pip install tensorflow-hub TF Hub 模型使用样例 import tensorflow_hub as hub hub_handle = 'https:/…
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算图) tf.saved_model.save(model, "保存的目标文件夹名称") 将模型导出为 SavedModel model = tf.saved_model.load("保存的目标文件夹名称") 载入 SavedModel 文件 因为 SavedModel…
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此示例使用手写数字的MNIST数据集.该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255. 在此示例中,每个图像将转换为float32并归一化为[0,1],并展平为784个特征的一维数组(28…
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数据集.该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255. 在此示例中,每个图像将转换为float32并归一化为[0,1]. 更多信息请查看链接: http://yann.lecun.com…
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. "Efficient Estimation of Word Representations in Vector Space.", 20131 from __future__ import division, print_function, absolute_import import collect…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…