深度学习的Xavier初始化方法】的更多相关文章

在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_scaling_initializer( factor=2.0, mode='FAN_IN', uniform=False, seed=None, dtype=tf.float32)1234567Returns an initializer that generates tensors without s…
"Xavier"初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedforward neural networks>. 文章主要的目标就是使得每一层输出的方差应该尽量相等.下面进行推导:每一层的权重应该满足哪种条件才能实现这个目标. 我们将用到以下和方差相关的定理: 假设有随机变量x和w,它们都服从均值为0,方差为σ的分布,且独立同分布,那么: •  …
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedforward neural networks>,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可. 为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等. 基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件. 文章先假设的是线性激活函数,而且满足0点处导数为1,即  现在我们先来…
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedforward neural networks>,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可. 为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等.基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件.文章先假设的是线性激活函数,而且满足0点处导数为1,即 现在我们先来分析一…
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
深度学习GPU加速配置方法 一.英伟达官方驱动及工具安装 首先检查自己的电脑驱动版本,未更新至最新建议先将驱动更新至最新,然后点击Nvidia控制面板 2.在如下界面中点击系统信息,点击显示可以看见当前的显卡驱动版本,点击组件可以看到红框中的CUDA版本的最高支持,在安装时只需要装这个版本之下的即可. 打开Cuda Tookit的安装官网,CUDA Toolkit Archive | NVIDIA Developer,选择自己需要的版本,但不能高于上面的版本号,此处以Cuda Tookit10.…
机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣,同时利用损失函数来提升算法模型. 这个提升的过程就叫做优化(Optimizer) 下面这个内容主要就是介绍可以用来优化损失函数的常用方法 常用的优化方法(Optimizer): 1.SGD&BGD&Mini-BGD: SGD(stochastic gradient descent):随机梯度下…
深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以分别从训练集和测试集上看到这个模型造成的损失大小(loss),还有它的精确率(accuracy). 目录 前言 1.定义模型函数 2.交叉验证(Cross-validation) 3.优化算法 4.激活函数(activation) 5.dropout 6.early stopping 模型训练实战案…
两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size 修改网络结构,类似于mobileNet MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Appli…
方法处理器 可以用 v-on 指令监听 DOM 事件: <div id="app"> <button v-on:click = "greet">Greet</button> </div> Js代码 new Vue({ el: '#app', data: { message: '菜鸟教程!' }, methods:{ greet:function () { alert("OP"); } } }) 内联…