是由一篇 IJCAI2016 扩的期刊. 该篇会议论文的阅读笔记[传送门] 期刊扩充的部分:P-SI2DL 1.问题描述: 在会议论文中介绍的SI2DL方法采用了视频三元组作为视频关系(是否匹配)的逻辑结构,即:<i, j, p> 满足 xi 和 xj 的距离小于 xi 和 xp 的距离. 但这个忽视了部分特殊情况,如下图: 上图演示了SI2DL通过距离矩阵将三元组之间的距离关系展现出来,(a)中只有 <i, j, p> 满足了三元组要求(即存在一个样本闯入了相匹配的视频样本距离领…
论文链接:https://arxiv.org/abs/1412.7062 摘要 该文将DCNN与概率模型结合进行语义分割,并指出DCNN的最后一层feature map不足以进行准确的语义分割,DCNN具有很强的空间不变性,因此比较擅长高层次的任务.该文通过在DCNN的最后一层添加一层CRF用来克服定位不准的问题.该文通过引入空洞算法来提高模型在GPU上的运行速度. 介绍 该文的一个主题是采用进行end-to-end训练的DCNN,相比传统的依赖,SIFT或者HOG等人工设计的特征会产生喜人的分…
摘要 (1)方法: 面对不同行人视频之间和同一个行人视频内部的变化,提出视频间和视频内距离同时学习方法(SI2DL). (2)模型: 视频内(intra-vedio)距离矩阵:使得同一个视频更紧凑: 视频间(inter-vedio)距离矩阵:使得两个匹配视频比不匹配视频距离更小. 设计了视频三元组(vedio triplet),提高学习矩阵的辨别力. (3)数据集: iLIDS-VID and PRID 2011 image sequence datasets 介绍 (1)当今大部分方法主要是基…
Introduction (1)背景知识: ① 人脸识别是具有高可靠性的生物识别技术,但在低解析度(resolution)和姿态变化下效果很差. ② 步态(gait)是全身行为的生物识别特征,大部分步态识别方法是基于轮廓而不受外貌影响,但在复杂的背景和遮挡下轮廓难以提取. (2)问题场景: 假设行人在不同的相机中不更换衣服,结合人体外貌特征和步态特征进行识别. 难点:行人重识别受到姿态.视角.光照.遮挡的影响,空间对齐(spatial alignment)通过处理不同部位的样貌来解决该问题. 然…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science literature The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical anal…