题解【[HNOI2010]弹飞绵羊】】的更多相关文章

P3203 [HNOI2010]弹飞绵羊 LCT板子 用一个$p[i]$数组维护每个点指向的下个点. 每次修改时cut*1+link*1就解决了 被弹出界时新设一个点,权为0,作为终点表示出界点.其他点点权为1. 然后统计一下路径就好辣 注意点的编号从0开始 #include<cstdio> inline void Swap(int &a,int &b){a^=b^=a^=b;} #define N 200005 ],fa[N],s[N],rev[N],p[N]; #defin…
[HNOI2010] 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数.…
P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为…
[BZOJ 2002] [HNOI2010]弹飞绵羊(Link Cut Tree) 题面 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹…
P3203 [HNOI2010]弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为…
题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所问的即是某个点到树根的链的长度. 那么,如果我们加上修改,显然,某个点连向的点会发生改变.对于一个能修改边的树,我们可以很自然的想到用LCT维护之. 至于怎么求某条链的长度呢?这也是LCT的基础操作之一,我们只需要先MakeRoot(n+1),然后再Acess(x),splay(x)就可以把这条链拉…
好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个…
好久没写博客了哈,今天来水一篇._(:з」∠)_ 题目 :弹飞绵羊(一道省选题) 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个…
题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数. 输入输出格…
弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(split(j,n)\)后,\(sum[i]-1\)的值.修改弹力系数,即为断开\(i\)和旧的\(i+ki\)的连接,然后连上\(i\)和新的\(i+ki\). 为了方便,以下代码把下标都加一了,即原编号变为\(1-n\),弹飞设为\(n+1\). 代码如下 #include <bits/stdc++…
http://www.lydsy.com/JudgeOnline/problem.php?id=2002 https://www.luogu.org/problemnew/show/P3203 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊…
\[ \texttt{Description} \] 有 \(n\) 个弹力装置排成一排,第 \(i\) 个弹力装置的弹力系数是 \(k_i\) ,绵羊到第 \(i\) 个装置时,会被弹到第 \(i+k_i\) 个弹力装置,若第 \(i+k_i\) 个装置不存在,则绵羊被弹飞. 你要维护这 \(n\) 个弹力装置,支持 \(2\) 种操作: 1 x 询问绵羊初始在第 \(x\) 个弹力装置时,被弹几次后被弹飞. 2 x y 将 \(k_x\) 改成 \(y\) . \[ \texttt{Solu…
裸的LCT,关键是要怎么连边,怎么将这种弹飞关系转化成连边就行了. 那么我们可以这样连边: 一个节点i的爸爸就是i+ki. 没有i+ki那么就被弹飞了,即\(i\)的爸爸是虚拟节点n+1. 那么怎么求次数呢? i的深度就是次数 对于求深度,我们可以先将x弄成root,然后通过Access(n+1)将n+1号节点和x节点丢到一个Splay里面,维护一个size,每次询问的answer就是已经Splay到根的n+1号节点的size了. Code: #include<bits/stdc++.h> #…
Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数. Input 第一行…
题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数. 输入 第一行包含一个整数n,表示…
Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数. Input 第一行…
题目大意:有$n$个节点,第$i$个节点有一个弹力系数$k_i$,当到达第$i$个点时,会弹到第$i+k_i$个节点,若没有这个节点($i+k_i>n$)就会被弹飞.有两个操作: $x:$询问从第$x$个节点开始要多少次会被弹飞 $x,y:$把第$x$个点的弹力系数修改为$y$. 题解:建一个节点标号$n+1$,所有大于$n$的位置都连向这,表示会被弹飞.其他每个节点向会被弹到的节点连边($i->k_i+i$),发现这样会构成一棵树. 询问就是问该点的深度(到$n+1$的距离).修改就是把原来…
分块(似乎还有一种动态树(LCT)做法) 第一次学习分块,似乎有点小激动 这是黄学长的分块入门博客「分块」数列分块入门1 – 9 by hzwer 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几…
传送门 Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞.绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞.为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数. Input…
洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环么? 于是,一个森林的模型被我们建出来了. 考虑到有修改弹力值的操作,也就是要断边和连边,于是用LCT维护. 思路一 每一个点向它弹到的位置连边.如果被弹飞了,那么这条边就不存在. 查询弹飞的步数,就是查询该点到其所属原树中根节点的路径的\(size\). 注意此题的一些特性.我们并不需要查询或者更…
点此看题面 大致题意: 有\(n\)个弹力装置,当到达第\(i\)个装置时,会被弹到第\(i+k_i\)个装置,若不存在第\(i+k_i\)个装置,就会被弹飞.有两种操作,一种操作是将\(k_x\)改为\(y\),另一种操作是询问从\(x\)出发被弹几次后会被弹飞. 考虑分块 这题可以用分块来做. 我们可以将弹力装置进行分块,对于每一块的弹力装置,可以先预处理出每个弹力元素弹出这个块之后到达的位置\(nxt_x\)以及需要的步骤\(val_x\). 对于询问操作,从询问的\(x\)出发,每一次将…
原题传送门 这题用Link-Cut-Tree解决,Link-Cut-Tree详解 预处理:从一个点弹到另一个点就在lct里从\(i\)连边到\(i+k_i\),如果绵羊被弹飞了就从\(i\)连边到\(n+1\)(一个虚拟点,方便统计) 操作1:split(x,n+1),把x到n+1路径上的点放到同一个Splay中,答案就是T.size[n+1]-1 操作2:先把\(i\)到\(i+oldk\)的边删除 如果\(i+newk<=n\),从\(i\)连边到\(i+newk\),否则就从\(i\)连边…
题面 Bzoj 洛谷 题解 大力分块,分块大小\(\sqrt n\),对于每一个元素记一下跳多少次能跳到下一个块,以及跳到下一个块的哪个位置,修改的时候时候只需要更新元素所在的那一块即可,然后询问也是\(\sqrt n\)的模拟. #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using std::min; using std::max; using st…
标签:分块.题解: 200000,而且标号从0开始,很符合分块的条件啊.看看怎么实现. 首先分成√n个区间,然后如果我们对于每一个位置i,求出一个Next[i]和step[i],分别表示跳到的后一个位置与步数,因为是分块所以就是跳到下一个区间的步数与位置了.处理这两个数组要从前到后,只需要O(n). 然后查询:自然是使用这两个数组,跳出去就return,复杂度O(√n). 修改:修改一个点自然是O(1),但是前面的会跳到这个地方,那不是前面的都要改?非也,因为Next[]仅仅跨越了一个区间,所有…
题意简述 有n个点,第i个点有一个ki,表示到达i这个点后可以到i + ki这个点 支持修改ki和询问一点走几次能走出所有点两个操作 题解思路 分块, 对于每个点,维护它走到下一块所经过的点数,它走到下一块到的店的编号 每次修改只会对这块左端点到这个点产生影响 代码 #include <cmath> #include <cstdio> using namespace std; struct Point{ int k, s, x, num; }p[200010]; int n, m,…
题面 题解 因为每个点都只能向后跳到一个唯一的点,但可能不止一个点能跳到后面的某个相同的点, 所以我们把它抽象成一个森林.(思考:为什么是森林而不是树?) 子节点可以跳到父节点,根节点再跳就跳飞了. 由于我们发现有一些父子关系要变,所以不能用树链剖分等静态的数据结构,可以用LCT(Link-Cut-Tree 联-切-树,即动态树,支持动态修改父子关系). 但是当我们询问答案的时候,我们发现wa了,那是因为我们询问的是x点到根的路径上的点数,但是各种LCT操作已经把原先的根不知换到那里去了,所以整…
不得不说块状数组好神奇的啊!这道题的标签可是splay的启发是合并(什么高大上的东西),竟然这么轻松的就解决了! var x,y,i,j,tot,n,m,ch:longint; f,k,l,bl,go:..] of longint; procedure init; begin readln(n); x:=trunc(sqrt(n));j:=x; to n do begin ;inc(tot);l[tot]:=i;end else inc(j); read(k[i]); bl[i]:=tot; e…
LCT裸题,之后填坑打一下 分块做法:每个点存几次出块以及出块的位置,问的时候直接暴力跳就vans了 首先思考最普通的模拟,发现可以O(n)路径压缩,O(1)的查询,但是需要修改就变成了O(n^2)的修改,于是考虑分块,记录一下每个点跳出该点所在的块的步数,也就是在每块内进行路径压缩,还有记录每个点跳出块后到达的点,同样可以块内路径压缩完成,这样就变成了O(sqrt(n))的修改和查询,但是预处理是O(n*sqrt(n))的,虽然可以过,但是LCT更快 时间复杂度:O((m+n)sqrt(n))…
发现好像写了一个洛谷上最快的分块 这道题曾经一度感觉非常不可做,因为\(LCT\)的标签以及没有什么思路的分块 但是自从\(yy\)出来一个错误的哈希冲突分块之后(修改的时候挂掉了),就发现这道题不就是我曾经的那个错误的思路吗 这种要往后不断的跳的题目,我们暴力往后跳的话肯定是会爆炸的,因为这样的复杂度完全取决于询问 于是我们就分块好了,一次跳一个不行,那么我们就一次跳一个块好了 我们设\(b[i]\)表示从\(i\)这个位置开始跳,直到跳出所在块的跳跃次数是多少,\(c[i]\)表示\(i\)…
题目链接 把每个点和能跳到的点连边,于是就构成了一个森林. 查询操作就是该点到根的路径长度,修改操作就相当于删边再重新连边. 显然是\(LCT\)的强项. 查询时\(access(x),splay(x)\),然后输出\(size[x]\)就行了. 修改时\(access(x),splay(x)\),然后双向断掉\(x\)与左儿子的边,然后直接和\(x+y\)连边即可. 简化版的\(LCT\) #include <cstdio> #define R register int #define I…