3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易…
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作"\(\alpha\)"."\(\alpha\)被定义为"元"构成的集合.容易发现,一共有两种不同的"\(\alpha\)". 第三天, 上帝又创造了一个新的元素,称作"\(\beta\)"."\(\beta\)&qu…
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四种元…
Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0),使q为一个奇数 第二项如果是1,mod 1 为0可以忽略. 则我们求: 2^2^2… mod p =2^k*(2^(2^2…-k) mod q) 因为q是奇数所以与2互质,根据欧拉定理: a^phi(p) mod p=1,(a,p)=1 转化为: 2^k*(2^(2^2…mod phi(p) –…
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}}-k)\ mod\ phi(P)}\ mod\ P)$,不要掉了$-k$ 然而取模的时候别乱取模,比如那个$2^k$不应该取模 #include <iostream> #include <cstdio> #include <cstring> #include <alg…
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理:\(a^b\equiv a^{b\%\varphi(p)+\varphi(p)}(mod\ p)\) (a为任意整数,b,p为正整数,且\(b>\varphi(p)\)(a,p不一定要互质).证明. 指数是无穷的,但是模数是有限的,从不断减小p去考虑. 设\(f(p)=2^{2^{2^{...}}…
题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b\%φ(p)}$的部分,最后在$φ(p)=1$时返回即可 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int pri[N],npr[N],phi[N]; long…
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; void setIO(string s) { string in=s+".in"; freopen(in.c_str(),"r",stdin); } int cnt; int phi[maxn],vis[maxn],prime[maxn]; ll qpow(ll a,l…
一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)=pow(2,ans(φ(p))+φ(p))%p 而边界是p=1时,ans(1)显然为0,这样递推就好了 # include<iostream> # include<cstdio> # include<cmath> # include<algorithm> con…