首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【51NOD-0】1130 N的阶乘的长度 V2(斯特林近似)
】的更多相关文章
1130 N的阶乘的长度 V2(斯特林近似)
1130 N的阶乘的长度 V2(斯特林近似) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) Output 共T行,输出对应的阶乘的长度. Input示例 3 4 5 6 Output示例 2 3…
51nod 1130 N的阶乘的长度 V2(斯特林近似)
输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) Output 共T行,输出对应的阶乘的长度. Input示例 3 4 5 6 Output示例 2 3 3 #include <cstdio> #include <string> #include <cstrin…
【51NOD-0】1130 N的阶乘的长度 V2(斯特林近似)
[算法]数学 [题解]斯特林公式: #include<cstdio> #include<algorithm> #include<cmath> using namespace std; const double pi=3.1415926535898,e=2.718281828459; int main() { int t; scanf("%d",&t); ;i<=t;i++) { long long n; scanf("%lld…
51nod 1130 N的阶乘的长度(斯特林近似)
输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) Output 共T行,输出对应的阶乘的长度. Input示例 3 4 5 6 Output示例 2 3 3 斯特林公式是一条用来取n阶乘近似值的数学公式.一般来说,当n很大的时候,n阶乘的计算量十分大 所以斯特灵公式十分好用,而且…
51Nod 1058: N的阶乘的长度(斯特林公式)
1058 N的阶乘的长度 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3 利用斯特林公式:长度l=lgN!+1: #include<bits/stdc++.h> using namespace std; const int maxn=1e…
51nod-1130-N的阶乘的长度V2(斯特林近似)-套斯特林公式
输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. 输入 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) 输出 共T行,输出对应的阶乘的长度. 输入样例 3 4 5 6 输出样例 2 3 3 对于n来说,要是求阶乘的话数据范围需要达到10^9以上才可以使用斯特林公式,否则会精度损失,造成误差比较大.但是要是求的是n的阶乘的长度的话,可以利用公式((log1…
N的阶乘的长度 V2(斯特林近似) 求 某个大数的阶乘的位数 .
求某个大数的阶乘的位数 . 得到的值 需要 +1 得到真正的位数 斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义.在数学分析中,大多都是利用Г函数.级数和含参变量的积分等知识进行证明或推导,很为繁琐冗长.近年来,一些国内外学者利用概率论中的指数分布.泊松分布.χ²分布证之. #include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #incl…
51Nod 1058 N的阶乘的长度
输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3 很基础的题目,算是复习了一波log运算吧. 一个数的位数就是其对10取对数之后+1,那么: log10(n!) = log10(1) + ... + log10(n). 51Nod 上面数据似乎不是很严,直接用这个也过了. 还有一种算法.点击进入 //Asimple #include <…
51nod 1058 N的阶乘的长度 位数公式
1058 N的阶乘的长度基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.Input输入N(1 <= N <= 10^6)Output输出N的阶乘的长度Input示例6Output示例3思路:位数公式 则有: 循环遍历即可 代码: #include <bits/stdc++.h> using namespace std; int main() { ios::sync_with…
(斯特林公式)51NOD 1058 N的阶乘的长度
输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3解:解法一: 上一篇刚讲了斯特林公式(x!=sqrt(2*Pi*n)*(n/e)^n),这里就用到了. x的位数计算公式:len=log10(x)+1; 代入斯特林公式并化简指数得:len=0.5*log10(2*Pi*n)+n*log10(n/4); 如下: #include <stdi…