题意 题目链接 Sol 知道FFT能做字符串匹配的话这就是个裸题了吧.. 考虑把B翻转过来,如果\(\sum_{k = 0}^M (B_{i - k} - A_k)^2 * B_{i-k}*A_k = 0\) 那么说明能匹配.然后拆开三波FFT就行了 /* */ #include<bits/stdc++.h> #define LL long long const int MAXN = 1e6 + 10, INF = 1e9 + 7; using namespace std; inline in…
P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1-i)-B(x-(m-1-i))]^2A(m-1-i)B(x-(m-1-i))]\),展开之后化简为\(P(x)=\sum_{i+j=x}A^3(i)B(j)-2\sum_{i+j=x}A^2(i)B^2(j)+\sum_{i+j=x}A(i)B^3(j)\) 做三次FFT即可,然后交题就出了一堆玄…
Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配? Input 第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度. 第二行为一个长度为m的…
P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C(x,y) =A(x)- B(y)\),若为0,表示B串中以第\(y\)个字符结尾的字符可以与A串中以\(x\)节为结尾的字符可以匹配 \(P(x) = \sum_{i = 0}^{m - 1}C(i,x - m + i + 1)\) 但是很遗憾当\(P(x)\),等于零时,只能够说明上述子串的字符…
luoguP4173 残缺的字符串 FFT 链接 luogu 思路 和昨天做的题几乎一样. 匹配等价于(其实我更喜欢fft从0开始) \(\sum\limits_{i=0}^{m-1}(S[i+j]-T[i])^2*T[i]*S[i]=0\) 展开得到 \(\sum\limits_{i=0}^{m-1}S_{i+j}^3T_{i}+\sum\limits\S_{i+j}T_{i}^3-2\sum\limits\S_{i+j}^2T_{i}^2=0\) 反转T串串 \(\sum\limits_{i…
[BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配? Input 第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B…
题目 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配? 输入格式 第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度. 第二行为一个长度为m的字符串A. 第三行为…
题目描述 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配? 题解 带通配符的字符串匹配问题. 我们先把通配符设为0,考虑如果匹配串中的一段和模式串完全匹配,那么必然满足∑(a[i]-b[i])^2*a[i]…
Fuzzy Search 给你文本串 S 和模式串 T,求 S 的每个位置是否能模糊匹配上 T. 这里的模糊匹配指的是把 T 放到 S 相应位置上之后,T 中每个字符所在位置附近 k 个之内的位置上的 S 的字符至少有一个与之相同. 1 ≤ |T| ≤ |S| ≤ 200 000, 0 ≤ k ≤ 200 000.字符串是基因序列. 题解 由于字符集很小,所以对每种字符分别处理. 对 T 每个位置赋值为它是否等于这个字符.对 S 的每个位置前后找找有没有这种字符即可. 然后卷积看看匹配了多少个位…
题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 \(p\),目标串为 \(t\),将两个串的内容都根据字母先后顺序映射到 \(1\) 到 \(26\). 如果不带有通配符,那么 \(t\) 以第 \(k\) 位结束的长度为 \(|p|\) 的子串与 \(p\) 匹配时有 \[\sum_{i=0}^{|p|-1} (p[i] - t[k - |p…
4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const int N=(1<<20)+5;…
题意:给你两个字符串,问你第一个在第二个中出现过多少次,并输出位置,匹配时是模糊匹配*可和任意一个字符匹配 题解:fft加速字符串匹配; 假设上面的串是s,s长度为m,下面的串是p,p长度为n,先考虑没有*的情况那么\(\sum_{j=1}^m(s_{i+j}-p_j)^2=0\)就表示能够从i开始匹配,现在考虑有*的情况,我们只需要让有*的和任意字符匹配即可,那么把公式变成\(\sum_{j=1}^m(s_{i+j}-p_j)^2*s_{i+j}*p_j)=0\),但是fft正向匹配太慢了,我…
本文半原创 参考资料:其实就是照抄的什么参考啊 我们知道KMP可以用来在线性复杂度内进行制胡窜匹配 今天教您一种新方法:用FFT进行字符串匹配 您可能觉得这很玄学,FFT不是做多项式卷积的吗,怎么还可以做制胡窜匹配 您先别着急,请接着听 我们设两个字符串--模式串\(a\),长度为\(m\),文本串\(b\),长度为\(n\).设下标为从0开始 定义函数\(a(i)\)返回a串位置i的字符,\(b(i)\)返回b串位置i的字符(其实就是下标) 定义匹配函数\(c(x,y)=a(x)-b(y)\)…
本文主要叙述用于字符串匹配的KMP算法. 阮一峰的博文“字符串匹配的KMP算法"将该算法讲述得非常形象,可参考之. 字符串‘部分匹配值’计算 KMP算法重要的一步在于部分匹配值的计算.模仿<算法导论>中的伪代码,对应的C++代码为: vector<int> partialMatching(string P) { int szP = P.size(); vector<int> pMatch; pMatch.resize(szP); // retVec[0] =…
2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t/26219 Rock Paper Scissors Lizard Spock Description: Didi is a curious baby. One day, she finds a curious game, which named Rock Paper Scissors Lizard…
两个串匹配时相匹配的位置位置差是相同的,那么翻转一个串就变成位置和相同,卷积的形式. 考虑如何使用卷积体现两个位置能否匹配.一个暴力的思路是每次只考虑一种字符,将其在一个串中设为1,并在另一个串中将不是该字符且不是通配符的设为1,卷积结果不为0则无法匹配.这样要跑26次1e6的FFT,就算有6s也……事实上这在luogu就可以过了. 当然这是因为luogu的评测机太神了,我们考虑一些更靠谱的方法.考虑用一些奇技淫巧. 定义两个字符串的距离函数为dis(a,b)=Σ(a[i]-b[i])2a[i]…
传送门 fftfftfft套路题. 我们把aaa ~ zzz映射成111 ~ 262626,然后把∗*∗映射成000. 考虑对于两个长度都为nnn的字符串A,BA,BA,B. 我们定义一个差异函数dist(A,B)=∑i=1n(ai−bi)2aibidist(A,B)=\sum_{i=1}^n(a_i-b_i)^2a_ib_idist(A,B)=∑i=1n​(ai​−bi​)2ai​bi​其中a,ba,ba,b是A,BA,BA,B的字符的映射值. 然后如果dist(A,B)=0dist(A,B)…
原文链接http://www.cnblogs.com/zhouzhendong/p/8798532.html 题目传送门 - BZOJ4259 题意 给你两个串,用其中一个来匹配另一个.问从母串的那些位置开始可以匹配模式串.注意有"*"可以匹配任何字符. 串长$\leq 3\times 10^5$. 题解 本题和BZOJ4503几乎一毛一样. 这里直接放BZOJ4503的传送门. http://www.cnblogs.com/zhouzhendong/p/8536065.html 但是…
题面 传送门 bzoj上的这两题是一样的...... 正文 我看到这道题,第一想法是跑魔改过的KMP,然后很快发现不可行 于是想换个角度思考 其实,本题最大的问题就在于通配符的存在:它可以匹配任意一个字符 那么我们考虑一个办法:令两个字符匹配成为"抵消",那么数学上的抵消会让我们想到什么呢? 没错,0 我们令所有的通配符为0,让匹配变成两个字符相乘,那么乘出来零就"抵消"了 想到这里以后,一个非常自然的想法就是令所有的普通字符匹配也变成乘积为0的,但是这显然不可行,…
又是一道FFT套路题 思路可以参考bzoj4503,题解 我们对串S和串T中出现的*处全部赋值为0. 反正最终的差异度式子大概就是 $C[i]=\sum_{j=0}^{|T|-1}S[i+j]T[j](S[i+j]-T[j])^2$ 然后和上一题一样的展开方式,将T串reverse一下做FFT再统计下即可. 然后这题卡常,FFT的长度是100W,所以用NTT会被卡常(我就T了) 然后就没了 #include<bits/stdc++.h> #define PI acos(-1) #define…
[传送门:BZOJ4259&BZOJ4503] 简要题意: 给出两个字符串,第一个串长度为m,第二个串长度为n,字符串中如果有*字符,则代表当前位置可以匹配任何字符 求出第一个字符串在第二个字串中出现的次数,及出现的位置开头在第二个字符串的位置(从小到大输出) 题解: FFT,通配符匹配 两道题几乎没区别 对于两个串长度为i,它们的相似程度为$\sum_{j=0}^{i-1}(A[j]-B[j])^2$(A[j]!='*'&&B[j]!='*') 把*设为0,则得到$\sum_{j…
传送门 考虑如何使用FFT计算两个子串是否匹配.如果字符集比较小可以把每个字符都拿出来暴力做一遍,但是字符集比较大的时候复杂度就会有问题.这个时候可以考虑匹配函数. 先考虑没有通配符的情况.将\(A\)串翻转,然后设匹配函数\(chk(i,j) = (A_i - B_j)^2\).不难知道\(A_i = B_j \Leftrightarrow chk(i,j) = 0\). 又设\(C(x) = \sum\limits_{i=1}^m chk(m + 1 - i , x + i - 1)\),那…
[题意]给定长度为m的匹配串B和长度为n的模板串A,求B在A中出现多少次.字符串仅由小写字母和通配符" * "组成,其中通配符可以充当任意一个字符.n<=3*10^5. [算法]FFT [题解]假设模板串的数组A用0~26代表所有字符,0为通配符,匹配串的数组B同理,那么用表示差异的经典套路: $$C_n=\sum_{i=0}^{m-1}(A_{n+i}-B_i)^2*A_{n+i}*B_i$$ 那么可以看出$C_n=0$当且仅当$S_A[n,n+m-1]=S_B[0,m-1]$…
Description: 给定两个带通配符的串,求可能出现几次匹配,以及这些匹配位置 Hint: \(n \le 3*10^5\) Solution: 定义匹配函数 \(P(x)=\sum_{i=x}^{x+m}(S1[i]-S2[i])^2*S1[i]*S2[i]​\) 展开的式子太长,有时间再放 大概是一堆字符串卷积 翻转后FFT即可 #include <map> #include <set> #include <stack> #include <cmath&…
Fuzzy Search 题意: 给定一个模式串和目标串按下图方式匹配,错开位置不多于k 解题思路: 总共只有\(A C G T\)四个字符,那么我们可以按照各个字符进行匹配,比如按照\(A\)进行匹配时,当\(k=1\)时,我们将目标串 \(ACAT\)化作 \(1~0~1~0\) 模式串 \(AGCAATTCAT\)化作 \(1~1~1~1~1~1~0~1~1~1\) 同样是反置目标串 可以得到以x为匹配终点的位置的匹配函数\(p(X)=\sum_{i+j=x}A(i)B(j)\) 如此进行…
问题描述 字符串str,模式串exp. 必须保证str中无'.'和'星号'字符,并且exp中'星号'不出现在首位,且无连续两个'星号'.PS星号是字符只是暂时没找到markdown的星号转义字符. '.'可以匹配任意一个字符,'星号'可以匹配0-多个星号前面的一个字符的情况. 输出可否匹配. 例: str="abc",exp="a.c" ,true str="abc",exp=".星号",true str="&quo…
https://www.lydsy.com/JudgeOnline/problem.php?id=4259 令通配符=0 f[i+m-1]=Σ (a[i+j]-b[m-1-j])^2 * a[i+j] * b[m-1-j] 若a[i,i+m-1]能匹配上b[0,m-1],则f[i+m-1]=0 式子展开是三个卷积的和 FFT优化 #include<cmath> #include<cstdio> #include<cstring> #include<algorith…
[题目分析] 同bzoj4503. 只是精度比较卡,需要试一试才能行O(∩_∩)O 用过long double,也加过0.4.最后发现判断的时候改成0.4就可以了 [代码] #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 1200005 #…
题意: DNA序列,在母串s中匹配模式串t,对于s中每个位置i,只要s[i-k]到s[i+k]中有c就认为匹配了c.求有多少个位置匹配了t. 分析: 这个字符串匹配的方式,什么kmp,各种自动机都不灵. 所以有一个邪门功夫,fft字符串匹配.(做过洛谷<残缺的字符串>一题的应该都不陌生,带通配符的匹配字符串可以用fft卷积来做) 首先,由于字符集大小只有4,所以我们可以对每个字符分别考虑. 根据题意,对于每个字符,我们预处理a[i]数组,代表i位置是否能匹配当前字符(左右k个能匹配也算) 之后…
很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配? Input 第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度. 第二行为一个长度为m的字符串A. 第三行为一个…